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Motivation

* Why did you do that?
* Why not something else?
Learning This is a cat * When do you succeed?
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* How do | correct an error?
Training Learned Output User with
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Motivation

DNNs are being deployed in contexts where the trustworthiness of the
model really matters!

* Self-driving cars [r1]
* Healthcare [r2, r3]

* Criminal justice [ra]
* Finance [Rrs)

* Warfare [rs, r7]

e Social media (societal and political impact) [R8, R9]

COMSMO0018 Applied Deep Learning Symposium, University of Bristol, 10t December 2018



Motivation

1. Articles 13 and 14 — Right to be informed

Given the core principle of transparency underpinning the GDPR. controllers must ensure they explain
clearly and simply to individuals how the profiling or automated decision-making process works.

[R10]
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High validation accuracy is hot enough

We need proof that the network has learnt relevant features — this
helps us assess the network’s susceptibility to adversarial inputs too

[R11]
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LIME

Original Image Interpretable
Components

: £(z) = argmin  L(f, g,7:) + Q2(g)

1 ; gels
I

X : input being explained
P f : model being explained (which is a black box to us)
L] .

g : an explanation model from the class of interpretable models G
. T, : measure of proximity to x

: L(f, g, m,) : g’s error in approximating f in the locality mt,
o

Q : measure of the complexity of the explanation

[R11, R12]
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LIME

atheism christian

From:- Richards

Subject: Christanity Bthe 4RSWERL
NTT P RGBS * x cor

| think IChristianity'is the one true religion.

If you'd like to know more, send me a note

Prediction probabilities

atheism [N 0)82

christian 0.18
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Why did this
happen?
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Improving LIME

* What makes a good explanation?
* Vanilla LIME: explanations don’t generalise well
* Anchor LIME: identify a set of constraints

* Ultimately: convert constraints into a decision tree. Create a simple program
as an explanation — decompile the model locally

Less than $50K More than $50K

: IF Country = United-States AND Capital Loss = Low
Married

050 AND Race = White AND Relationship = Husband
AND Married AND 28 < Age < 37

AND Sex = Male AND High School grad

AND Occupation = Blue-Collar

THEN PREDICT Salary > $50K

Capital Gain = Nong
0.23

Hours per week <= 40
0.16

Occupation = Blue Collar

[R13, R14]
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Improving LIME

* Interpretable components
* Finding sub-regions with similar colours has limitations

* RISE: Randomized Input Sampling for Explanation of black-box models uses
random pixel masks instead of components

(a) Input (b) RISE (ours) (¢) GradCAM (d) LIME

[R15]
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RISE: Randomized Input Sampling for
Explanation

* Generates an importance map over S</\) — IE:M [f(l © M) | M()‘) — 1]

all pixels
« Causal metrics distinguish between 1) Continuous masks instead of binary.
insertion and deletion 2) Monte Carlo approximation of expectation.

* Better performance than LIME on
ImageNet

MC

Table 1: Comparative evaluation in terms of deletion (lower is better) and insertion (higher is better)
scores on ImageNet dataset. Except for Grad-CAM, the rest are black-box explanation models.

)]

always preserved

Method ResNet50 VGGI16

Deletion Insertion Deletion Insertion
Grad-CAM [3d] 0.1232 0.6766 0.1087 0.6149
Sliding window [ET] 0.1421 0.6618 0.1158 0.5917
LIME [3] 0.1217 0.6940 0.1014 0.6167
RISE (ours) 0.1076 =0.0005 | 0.7267 £+ 0.0006 0.0980+0.0025 | 0.6663+0.0014

[R15, R16]
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Upcoming research

Currently under review for ICML 2019 (https://openreview.net/group?id=ICLR.cc/2019/Conference):

* Identifying Bias in Al using Simulation — testing face detection systems for racial bias using
(highly realistic) CGlI

* Explaining Image Classifiers by Counterfactual Generation — saliency detection should be conducted
with plausible alternative values in the context of the surrounding region

* ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
and What a difference a pixel makes: An empirical examination of features used by CNNs for categorisation
both found that CNNs learn non-shape features (such as a single predictive pixel amongst
50176 pixels!)

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1%  tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% Siamese cat 9.6% black swan
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https://openreview.net/group?id=ICLR.cc/2019/Conference

Further Reading

LIME is just one of many existing techniques and the research field is
rapidly expanding. The following provide good surveys from contrasting
perspectives:

 What do we need to build explainable Al systems for the medical
domain?, Holzinger et al. (2017)

e Peeking Inside the Black-Box: A Survey on Explainable Artificial
Intelligence (XAl), Adadi & Berrada (2018)

 DARPA Explainable Al (XAl) Program Update, Gunning (2017)
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https://arxiv.org/pdf/1712.09923.pdf
https://ieeexplore.ieee.org/abstract/document/8466590
https://www.darpa.mil/attachments/XAIProgramUpdate.pdf

Conclusion

It is possible to explain your DNN'’s output, and you should

It is our responsibility as computer scientists to develop explainable
deep learning systems to ensure outcomes are accurate, ethical, and
fair.
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Conclusion

It is possible to explain your DNN'’s output, and you should

You can start explaining your DNNs using LIME with a few lines of
Python: https://github.com/marcotcr/lime
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https://github.com/marcotcr/lime
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