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Motivation

DNNs are being deployed in contexts where the trustworthiness of the 
model really matters! 

• Self-driving cars [R1]

• Healthcare [R2, R3]

• Criminal justice [R4]

• Finance [R5]

• Warfare [R6, R7]

• Social media (societal and political impact) [R8, R9]
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High validation accuracy is not enough

We need proof that the network has learnt relevant features – this 
helps us assess the network’s susceptibility to adversarial inputs too

[R11]
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LIME

[R11, R12]
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LIME

L(f, g, πx) : g’s error in approximating f in the locality πx

x : input being explained
f : model being explained (which is a black box to us)
g : an explanation model from the class of interpretable models G
πx : measure of proximity to x
Ω : measure of the complexity of the explanation

[R11, R12]
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LIME
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Improving LIME

• What makes a good explanation?
• Vanilla LIME: explanations don’t generalise well

• Anchor LIME: identify a set of constraints

• Ultimately: convert constraints into a decision tree. Create a simple program 
as an explanation – decompile the model locally
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Improving LIME

• Interpretable components
• Finding sub-regions with similar colours has limitations

• RISE: Randomized Input Sampling for Explanation of black-box models uses 
random pixel masks instead of components
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RISE: Randomized Input Sampling for 
Explanation
• Generates an importance map over 

all pixels
• Causal metrics distinguish between 

insertion and deletion
• Better performance than LIME on 

ImageNet

[R15, R16]
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Upcoming research

Currently under review for ICML 2019 (https://openreview.net/group?id=ICLR.cc/2019/Conference):

• Identifying Bias in AI using Simulation – testing face detection systems for racial bias using 
(highly realistic) CGI

• Explaining Image Classifiers by Counterfactual Generation – saliency detection should be conducted 
with plausible alternative values in the context of the surrounding region

• ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
and What a difference a pixel makes: An empirical examination of features used by CNNs for categorisation 
both found that CNNs learn non-shape features (such as a single predictive pixel amongst 
50176 pixels!)
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Further Reading

LIME is just one of many existing techniques and the research field is 
rapidly expanding. The following provide good surveys from contrasting 

perspectives:

• What do we need to build explainable AI systems for the medical 
domain?, Holzinger et al. (2017)

• Peeking Inside the Black-Box: A Survey on Explainable Artificial 
Intelligence (XAI), Adadi & Berrada (2018)

• DARPA Explainable AI (XAI) Program Update, Gunning (2017)
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https://arxiv.org/pdf/1712.09923.pdf
https://ieeexplore.ieee.org/abstract/document/8466590
https://www.darpa.mil/attachments/XAIProgramUpdate.pdf


Conclusion

It is possible to explain your DNN’s output, and you should

It is our responsibility as computer scientists to develop explainable
deep learning systems to ensure outcomes are accurate, ethical, and

fair.
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Conclusion

It is possible to explain your DNN’s output, and you should

You can start explaining your DNNs using LIME with a few lines of 
Python: https://github.com/marcotcr/lime
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