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Executive Summary

CPU design is in crisis. Moore’s law has failed: semiconductor advances can no longer be relied upon for sub-
stantial performance gains, motivating increasingly aggressive pipeline optimisation and faster design cycles
as manufacturers struggle to remain competitive. Security has suffered under this approach, as highlighted
by the ongoing disclosure of transient execution vulnerabilities. Mitigations are now in place for Meltdown
and Spectre, but has the industry learnt anything from them? With little economic incentive for security and
increasingly complex microarchitectural designs, it is likely more CPU vulnerabilities will emerge in the future.
Open-source CPU auditing tools can help tackle this problem, complementing verification tooling by enabling
users to investigate the behaviour of their CPUs.

This project develops one such auditing tool for investigation of undocumented instruction behaviour on the
x86 and RISC-V architectures. The tool is used to test three hypotheses across five different microarchi-
tectures: firstly, the hypothesis that undocumented instructions exist on the microarchitectures under test;
secondly, that undocumented exception and/or decoding behaviour occurs; and finally, that transient execution
of #UD-faulting instructions occurs on Intel Broadwell. The project is the first known investigation of undoc-
umented instructions on RISC-V, with the surprising finding that a commercially-available RISC-V platform
not only features undocumented instructions but decodes two entirely undocumented instruction formats. On
x86, the project presents new strategies for searching and testing the instruction space, in particular developing
a methodology for microbenchmarking of undocumented instructions via speculative execution. It confirms
the finding of Canella et al. that #UD-faulting instructions are not transiently executed, demonstrating ex-
perimentally that #UD-faulting instructions exhibit uniform behaviour from the instruction decoding stage
onwards.

Concretely, this project’s main contributions are as follows:

• The first known investigation of undocumented instructions on RISC-V, identifying 2048 undocumented
instructions on the HiFive Unleashed (at least 608 of which modify architectural state) and partially
reverse-engineering their instruction format and functionality.

• A novel x86 instruction search approach conducting a timing attack on the three-byte opcode space.

• Two novel instruction testing techniques (using TSX RTM and the specpoline construct) which suppress
exception generation for significantly improved stability and performance (RTM is 95.8% faster than the
established instruction testing technique).

• An experimental investigation of transient execution of #UD-faulting instructions, with results support-
ing the findings of [1].

• The first CPU fuzzing tool for RISC-V, a version 2 release of the open-source OpcodeTester tool com-
patible with both RISC-V Linux and SiFive Freedom Metal and additionally incorporating the project’s
contributions on x86 [2].

The summaries at the beginning of Chapters 3 and 4 list the project’s contributions more fully.
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Dissertation Outline

Chapter 1 motivates the project, providing a high-level introduction to core architectural concepts and to
central issues in CPU security. It presents the design trends and pressures in the CPU industry which led to
the extreme complexity of current designs, discusses the broader economic, political, and technical context
for CPU security and potential undocumented behaviour, and motivates why undocumented instruction be-
haviour in particular poses a security concern. Additionally, it summarises prior work regarding undocumented
instruction behaviour and presents the project’s specific aims and objectives.

Chapter 2 provides technical background in security and computer architecture concepts relevant to the project.
It elaborates upon design concepts such as the CPU pipeline, instruction-level parallelism, privilege levels, and
caching, providing a deeper understanding of why CPUs are vulnerable to the side-channel and transient
execution attacks introduced in Chapter 1. It introduces the ISAs and microarchitectures under test, in partic-
ular presenting details of x86 and RISC-V instruction encoding necessary for understanding of Chapters 3 and 4.

The implementation of OpcodeTester and the project’s experimental results are split by ISA, with Chapters 3
and 4 presenting the project’s contributions on RISC-V and x86 respectively. Chapter 3 describes the instruc-
tion testing technique developed for x86 in a previous project, discusses the challenges encountered porting
this technique to RISC-V and improving its stability, and provides minimal code examples for instruction test-
ing on RISC-V in user mode on Linux and in machine mode with the Freedom Metal framework. It details
experimental results proving hypotheses 1 and 2 correct on the HiFive Unleashed and HiFive1, and describes
the reverse-engineering of the undocumented instructions found. Hypothesis 3 was not investigated as neither
of the microarchitectures under test support transient execution.

Chapter 4 presents the project’s contributions on x86, including a novel instruction search strategy via a timing
attack on the three-byte opcode space, and two novel instruction testing techniques employing Intel TSX and
the specpoline mechanism. The latter enabled fine-grained investigation of instructions’ microarchitectural
effects and was used to confirm the findings of [1] regarding transient behaviour of #UD-faulting instructions.
Primarily hypotheses 2 and 3 were investigated, with the new testing techniques and search strategy facilitating
future work on hypothesis 1.

Chapter 5 critically evaluates the project, summarising its outcomes, discussing the challenges faced, and
reflecting on the work’s assumptions and limitations. It presents the case for future work porting instruction
fuzzing to other architectures and to other hardware components beyond the CPU, discusses the potential for
alternative search strategies for the instruction space, and concludes with reflection on the outlook for CPU
security.
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Supporting Technologies

The following hardware was used in development and testing:

• Hardware provided by my supervisor Dr. Daniel Page

– SiFive HiFive Unleashed development board, used as the RISC-V Freedom U540 microarchitecture
under test

– SiFive HiFive1 development board, used as the RISC-V Freedom E310 microarchitecture under test
– Toshiba NB200 laptop, used as the x86 Intel Bonnell microarchitecture under test
– Intel Galileo Gen. 1 development boards x2, intended for use as Intel x86 microcontrollers under

test but unfortunately both bricked by failed firmware updates

• Dell Latitude E7450, personal laptop used as the x86 Intel Broadwell microarchitecture under test and
as my primary development environment

• Dell Inspiron 1564, personal laptop used briefly as the x86 Intel Westmere microarchitecture under test
before hardware failure

As always, I am indebted to the open-source community, as this project made extensive use of open-source
hardware and software. In particular:

• The Linux ecosystem (particularly Ubuntu, the GNU toolchain, Python, and the version-control software
Git) was crucial to my development environment

• The RISC-V toolchain and SiFive Freedom SDK enabled development for the HiFive boards

• For x86, the Intel XED disassembler was invaluable as a ’golden reference’ for documented instructions
[3] and is linked into the final tool; similarly Michael J. Clark’s disassembler for RISC-V [4]

• The Sandsifter CPU fuzzer inspired the first version of my OpcodeTester tool, and its tunneling algorithm
was used extensively in my investigation of undocumented behaviour on x86 [5]

Figure 1: The SiFive HiFive Unleashed (left) and HiFive 1 (right) development boards.
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Chapter 1

Motivation

"The only truly secure system is one that is
powered off, cast in a block of concrete
and sealed in a lead-lined room with armed
guards - and even then I have my doubts."

Gene Spafford [6]

1.1 The Complexity Explosion
Programming early computers such as the ENIAC was a demanding task. In contrast to the ease with which
we switch apps on our laptops and phones today, changing the software on the ENIAC required physically ad-
justing cable connections and switches, taking anywhere from half an hour to an entire day [7]! With the first
implementation of the stored-program paradigm in 1948 [8], however, the Central Processing Unit (CPU) was
born. Effectively acting as the computer’s brain, the CPU fetches instructions from memory, decodes them,
either executes them or delegates them to other processing components, and stores the results. Crucially, it is
general-purpose: it can execute instructions with a wide range of different functionality, and the instructions
it loads can be easily modified without physically modifying the hardware. The instructions the CPU under-
stands are known as its instruction set architecture (ISA), which specifies a contract between the software
developer and the hardware designer: software created for a given ISA will run on any CPU which supports
that ISA, even though the physical designs (the microarchitecture) of each of those CPUs may be very different.

Whilst early CPUs were formed of many discrete hardware components, CPUs as we know them today
were born with the advent of the microprocessor in the 1970s, when CPUs were produced for the first time on
a single integrated circuit (IC). One such microprocessor was the Intel 8086, released in 1978. The first CPU
for the x86 ISA now dominant on desktop and server computers, it featured just 29,000 transistors at a scale
of 3,000 nm each [10]. In the four decades since, there has been an overwhelming explosion of complexity
in CPU design: the A12 CPU released in 2018 for the iPhone comprises an astounding 6.9 billion transistors,
each just 7 nm in size1 [12]! This immense complexity enables the A12 to be approximately 50,000x faster
than the 80862, but makes it fiendishly complex to verify the CPU’s correctness or prove its security.

How did this complexity explosion occur? For many years, advances in semiconductor technology and in-
creasing transistor counts enabled rapid performance improvements. Dennard scaling enabled transistor density
to be increased whilst keeping power density constant, and Moore’s law - Gordon Moore’s famous prediction
that CPU transistor counts would double every two years [7] - became a self-fulfilling prophecy as the software

1Note that these sizes are exploited for marketing purposes, and so what a quoted size actually measures varies [11].
2[13] found the average performance of the 8086 to be 0.4 relative to the VAX-11/780 across four benchmarks. This result

was used to convert the performance metric relative to the VAX-11/780 in Figure 1.1 of [7] to a metric relative to the 8086,
resulting in 4-core Intel Core i7 Extreme 3.2 Ghz performance of over 25,000 relative to the 8086. Finally, the result of [12] that
the Apple A12 outperforms a moderately-clocked Skylake CPU in single-threaded performance was used to relate the A12 to the
relative performance of the i7. These repeated comparisons inevitably add imprecision to the result and it must be stressed that
this figure is for illustrative purposes only.
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1.1. THE COMPLEXITY EXPLOSION

Figure 1.1: An Intel Core i7-7820X CPU (14nm node), showing the (colourised) die - the IC itself - removed
from its heatsink and external casing. The die has been etched to the polysilicon layer and photographed with
a reflected light microscope: for reference, it has approximately the same surface area as a one penny coin.
Image reproduced from [9].

industry began to rely on this rate of performance improvement to increase the capabilities (and corresponding
complexity and inefficiency [14]) of software; in turn, the CPU industry became dependent on this demand for
continued sales. Powerful instruction-level parallelism techniques such as pipelining, out-of-order execution,
and speculative execution helped compensate for the performance bottlenecks imposed by other hardware
components improving at slower rates, such as memory (DRAM) [7].

Over time, however, transistor advances began to face acute physical constraints, and in stark contrast
to the 52% per year performance increases from 1986-2003, performance improved just 3.5% per year from
2016-2018 [7]. Dennard scaling reached its limit in 2004, prompting the rise of multicore CPUs composed
of multiple interconnected cores optimised for different tasks or used together to further exploit parallelism.
However, these too soon encountered constraints. Amdahl’s law limits the number of useful cores for a task:
if a given percentage of a computation is inherently serial, then no number of cores can achieve a performance
improvement factor greater than this value. Heat dissipation, meanwhile, became increasingly challenging
with higher transistor counts now (without Dennard scaling) also increasing power density. This produced
the phenomenon of dark silicon: CPUs could no longer use all their transistors simultaneously. At the very
smallest transistor sizes (so-called nodes) today such as 8nm, CPUs can only operate an estimated 50% of
their transistors at full frequency at once [15].

With increased transistor counts becoming burdensome rather than beneficial, the pressure to maintain
Moore’s law has been desperate in recent years, and - combined with intense market competition - has incen-
tivised manufacturers to minimise testing and verification and ship the "most unreliable CPU that can not be
detected as unreliable" [16]. It has also motivated the increasingly aggressive use of instruction-level parallelism
techniques, which - whilst ingenious - are fiendishly complex to implement in hardware, verify, or formally prove
secure. It is easy to envisage the degree to which hardware complexity growth has outstripped the capabilities
of verification and test tools; verifying 20,000 transistors is considerably more feasible than verifying 7 billion
transistors subject to quantum effects [17]! The ISA itself can pose further verification challenges. x86 in
particular has evolved into a monstrously complex beast due to a variety of factors, including maintaining
backwards compatibility back to 1978, compensating for weak performance gains via new ISA features [18],
and fierce competition between the key manufacturers Intel and AMD [19]. With its 15-byte instructions alone
(see Section 2.3) it has 2120 different encodings: even testing 1 billion instructions per second, testing every
single one of these to ensure they behave as expected would take over 3 billion times longer than the current
age of the universe3.

Throughout this complexity explosion, security has been seriously neglected. Whilst certain hardware
’security’ features such as hardware roots of trust and secure enclaves have been added, these have known
vulnerabilities and violate the fundamental security principles of least privilege and separation of privilege
(see Section 1.2.4). With ever-increasing complexity, ineffective verification, and few economic incentives for
manufacturers to prioritise security [16], CPU vulnerabilities are now a serious threat. This was dramatically

3Calculated using 4.3 ∗ 1017 as the approximate current age of the universe in seconds (source: WolframAlpha).
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1.2. UNTRUSTING THE CPU

illustrated by the Meltdown and Spectre vulnerabilities in 2018 (with disclosure of related transient execu-
tion vulnerabilities still ongoing) [20] [21], which exploited instruction-level parallelism techniques to bypass
hardware-enforced security isolation between abstraction layers, such as between the unprivileged user and the
privileged operating system (see Section 1.2.4). Performance optimisations traded security for speed, and led,
ultimately, to an attacker being able to steal data from your web browser and even read arbitrary memory
on your computer remotely via a web page [22] [23]. Yet the potential risks of these optimisations had been
known for more than 20 years [24]. How can we fix the complexity explosion and broken economic incentives
which led to these vulnerabilities being ignored for so long? And are there yet more serious CPU vulnerabilities
lying in wait?

1.2 Untrusting the CPU
To complement the prior section’s discussion of trends in CPU complexity, this section introduces the broader
economic, political, and technical context for CPU security, discussing the security impacts of global supply
chains, governmental surveillance, IP and licensing, and ’leaky’ technical abstractions4.

1.2.1 Global Supply Chains
"Nearly every conceivable component within [the US Department of Defense] is networked...built on inher-
ently insecure architectures that are composed of, and increasingly using, foreign parts...Solving this problem
is analogous to complex national security and military strategy challenges of the past, such as the counter
U-Boat strategy in WWII and nuclear deterrence in the Cold War." [26]

Figure 1.2: A map of Intel’s ten main manufacturing sites. Image reproduced from [27].

Historically, the microelectronics industry (including a wide range of IC products, not only CPUs) has had
exceptionally high financial barriers to entry. Hardware development cycles - and therefore times to market -
are much slower than in software development, and manufacturing at the nanometre scale requires extremely
expensive specialised equipment. A proposed new Intel fab in Israel will cost US $11 billion if built [28], and
Taiwan Semiconductor Manufacturing Co (TSMC) estimate their fab dedicated to the future 3nm node will
cost over US $20 billion [29]. Whilst some integrated device manufacturers (IDMs) continue to both design
and manufacture their hardware, many ’fabless’ companies such as AMD, Arm, Qualcomm and Broadcomm
[30] operate without manufacturing capabilities altogether. They instead produce designs for CPUs, SoCs
(Systems on Chips, which integrate all computing components of a system into a single IC) or subcomponents

4Credit is due to [25] for inspiring this section’s title.
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1.2. UNTRUSTING THE CPU

(IP blocks) and then outsource manufacturing to dedicated foundry companies such as TSMC, or license the
designs to other companies to adapt, manufacture and distribute. Even IDMs such as Intel have complex global
supply chains, as illustrated by Figure 1.2, and this is without even considering their far larger global networks
of offices conducting hardware design, firmware and software development, and other business tasks. Unfor-
tunately, global supply chains and the fabless business model bring with them a substantial security risk: lack
of control over the supply chain. This introduces the potential for hardware tampering at many different stages.

The CPU begins life as a high-level design specification. This design is implemented in code at the
register-transfer level (RTL) in a language such as Verilog, before being synthesised into a gate-level netlist
and then transformed into GDSII format using EDA (electronic design automation) tools [31]. At each of
these stages third-party intellectual property (IP) blocks (such as a secure coprocessor) may be added. The
foundry fabricates the GDSII layout into a wafer, which is then cut into individual dies at the assembly facility,
with each die being subsequently processed further and encapsulated. The finished CPUs are shipped to dis-
tributors and system manufacturers (referred to here as OEMs), before being integrated into systems and sold
to consumers. Testing and verification is of course involved at each development stage, along with further
implementation such as Design for Test debugging infrastructure (see [31] for further details). However, even
in this simplified description of the manufacturing process the complexity of the supply chain is apparent.
Vulnerabilities may be introduced not only by engineers and factory workers but also by governmental intel-
ligence agencies in each of the countries through which the CPU transits, or by software bugs in the EDA tools.

A variety of hardware trojan designs have been proposed which are extremely challenging to detect and
could be implemented at a third-party fab, such as [32], which modifies the dopant polarity of transistors to
compromise a system without adding any additional digital logic. An alternative to IC modification of the
CPU itself - as this requires high technical sophistication - is to compromise adjacent system components with
privileged access to the CPU. For example, a hardware implant can compromise the baseboard management
controller on servers to exfiltrate data processed by the CPU and even to control the CPU [33]. This risk was
dramatically highlighted by Bloomberg’s recent claim that server manufacturer Supermicro had been targeted
by the Chinese government in a hardware supply chain attack. Allegedly, embedded implants smaller than
a grain of rice were used to target servers used by the US government and major US companies, including
Amazon and Apple [34]. This has been widely denied by the companies involved and the US government
[35] and, with evidence not forthcoming from Bloomberg, it remains unclear whether the attack did occur or
whether vested interests were at work in the article’s publication. However, the story clearly illustrates the
wide reach such an attack could have if successful.

Furthermore, nation states are now establishing dedicated cyber military units and investing significant
resources into cyberwarfare: we have already seen state-sponsored electoral interference [36] and attacks
on critical national infrastructure such as hospitals [37], the power grid [38], and nuclear facilities [39]. In
particular, Russia has conducted cyber attacks on numerous countries and has been engaged in hybrid warfare in
Ukraine since 2014 [40]. In light of this, state-sponsored cyberwarfare via sophisticated hardware modification
now seems plausible. Huang has noted that supply chains are essentially a TOCTOU (time of check, time
of use) security problem [41]: the gaps in time and location between when hardware is tested at each stage
of manufacturing, and when it is actually used, provide nation states and other malicious actors with ample
opportunity to compromise a product during manufacture or transit. (Note that state-sponsored hardware
tampering for cyberwarfare is distinct from hardware tampering for mass or targeted surveillance of a state’s
own citizens, as discussed in the next section, because a cyberwarfare attack specifically targets other nations.)

1.2.2 Backdoors and Surveillance
The ’crypto wars’ provide a long history of governments attempting to compromise encryption, in particular
via export controls weakening cryptographic protocols and key escrow schemes, in which the government
holds a master key or set of keys to decrypt all encrypted communications [42]. The risks of master keys,
or backdoors, are obvious: such privileged access violates privacy norms, is ripe for governmental abuse, and
can be maliciously used by a third party if the keys are leaked. Removing the backdoor after the leak may be
impossible if it forms an integral component of the cryptosystem or is implemented in hardware. The leaks
of the TSA’s master keys are an excellent example. The US Transportation Security Adminstration (TSA)
requires access to air passengers’ luggage for inspection: if passengers wish to lock their luggage, they must
use approved locks which are designed to be opened by a set of master keys, or risk their luggage being opened
by force. Yet thanks to a photo of the keys mistakenly published by the Washington Post, the master keys
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have been reverse-engineered and can now be cheaply ordered online or even, for those with access to a 3D
printer, printed at home [43].

The Wikileaks disclosures of 2013 established that government intelligence agencies in the USA, UK,
Canada, Australia, and New Zealand are complicit in mass surveillance of global digital communications [44].
This mass surveillance included the insertion of backdoors into commercial products: a budget leaked to the
New York Times detailed that the US National Security Agency (NSA) requested $250 million in 2013 for
the SIGINT Enabling Project, which "actively engages the US and foreign IT industries to covertly influence
and/or overtly leverage their commercial products’ designs...[to] make the systems in question exploitable"
[45]. Whilst holiday luggage does not typically contain highly valuable or highly sensitive items, digital sys-
tems contain a wealth of sensitive data and so a leaked digital backdoor would have a far more significant
impact. The leak of EternalBlue from the NSA5, for example, had a significant global impact: its use in the
WannaCry malware alone is estimated to have caused over US $8 billion of damage [46]. Given the com-
plex global supply chains of most digital products, it is unlikely that a digital backdoor could be contained
within one nation’s jurisdiction, making the legality of such governmental mechanisms highly questionable [42].

Unfortunately, lawmakers continue to overlook these concerns. The recent Assistance and Access (AA)
Bill in Australia is a case in point, appearing to ask the impossible: whilst it includes "an explicit prohibition
against...a systemic weakness or vulnerability", it requires providers to ’selectively deploy’ such weaknesses or
vulnerabilities if asked [47]. A selectively deployable backdoor is still a backdoor: as a provider cannot know
in advance which users they may be asked to deploy the backdoor against, they must necessarily implement
a mechanism for deployment of the backdoor for all users of their product. In the case of hardware, the
provider will not (in the vast majority of cases) have physical access to the hardware after its sale, and so
must implement a remote deployment mechanism. Such mechanisms could be maliciously leaked or reverse-
engineered, and then - in the case of a remote mechanism - could be potentially used by a malicious third party
to compromise all users of the product globally. Essentially, the AA Bill constitutes a supply-chain compromise
for all products developed or maintained in Australia.

Given these precedents, it is therefore plausible that Intel, AMD and other CPU manufacturers may have
been legally compelled to insert backdoors into their products and/or their products’ cryptographic mecha-
nisms (such as the rdrand instruction and underlying random number generator). This further motivates
the need to research undocumented CPU behaviour. Such a backdoor would almost certainly be undocu-
mented, as typically such legal compulsion includes a requirement for strict secrecy regarding the nature of
the request. Warrant canaries are the only known legal mechanism for a company to disclose that it has been
subject to such a request [48], and neither Intel nor AMD maintain one, although Intel state that their "prod-
uct development policy and practices prohibit any intentional steps to allow undocumented device access" [49].

1.2.3 IP, Licensing, and RISC-V
As introduced in Section 1.2.1, many CPU manufacturers are now fabless, and a common business model is
to produce designs of CPUs and subcomponent IP blocks which are then licensed to third-parties. Arm, the
dominant manufacturer in the mobile and embedded markets [50], is a prominent example of a ’manufacturer’
whose business model primarily revolves around licensing and royalties for IP. They issue very few architectural
licenses, i.e. licenses to design new microarchitectures for the Arm ISA, and so a company entering the market
would need to purchase a license for one of Arm’s existing CPU designs. The costs involved are substantial:
an ’entry-level’ single-use license for a Cortex-A CPU costs approximately $1 million upfront plus 2% royalties
from every CPU sold, whilst the upfront costs for other licenses can exceed $10 million [51]. Obtaining a
license for the x86 architecture, meanwhile, appears to now be close to impossible: Intel and AMD have a
history of trying to lock competitors (including each other) out of the x86 market via a stranglehold of patents,
cross-licensing agreements and legal proceedings, which has led to their current monopoly over the ISA6 [52].

ISA licenses therefore present a significant legal and financial barrier to entry to CPU design. An open-
source, freely-licensed and widely-supported ISA could open up the market to newcomers, potentially reducing
the industry’s monopolization, spurring microarchitectural innovation, and increasing the economic incentive

5Note that it is believed EternalBlue was a stockpiled vulnerability rather than a deliberately implemented backdoor.
6This is excepting Centaur Technology/Via Technologies; they are the only other current license holders and manufacturers

of x86 processors. Their x86 market share outside China appears to be negligible, but no recent statistics are available.
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Figure 1.3: Software (grey) and hardware (white) abstraction layers.

for security by improving profit margins. Along with the potential for new microarchitectural security features,
the resulting design heterogeneity might be beneficial to security in itself: considering security from the per-
spective of biological immune systems as suggested by [53], microarchitectural diversity could help prevent
future cross-manufacturer CPU ’superbugs’ such as Spectre and Meltdown. An open-source ISA could start
afresh, learning from the mistakes of older architectures such as x86 to improve efficiency without sacrificing
security. The ISA’s openness would make analysing its security far more accessible, enabling any ISA-level
vulnerabilities to be more rapidly discovered and fixed. Could this dream ISA be the solution to the CPU
industry’s current security crisis?

Proponents of RISC-V, an open-source ISA developed by the RISC-V Foundation, argue that it could play
this role. It is not the only open-source ISA, with others including OpenRISC and the recently open-sourced
MIPS, but so far it appears to have the most momentum. In particular, Western Digital have developed and
open-sourced the RTL for a RISC-V CPU (SweRV) [54], and plan to gradually transition their entire product
stack to using RISC-V CPUs, anticipating shipping around 2 billion annually once completed [55]. Nvidia
chose RISC-V for the next generation of their Falcon microcontroller used in all their GPUs, specifically citing
the cost of an Arm out-of-order CPU as motivation [56], whilst other RISC-V Foundation members include
Google, Qualcomm, Samsung, NXP Semiconductors, Rambus, and Thales. Widespread adoption is crucial
to an ISA’s success, as companies are unlikely to choose an ISA without strong toolchain support or with
insufficient support for their customers’ applications. RISC-V’s substantial industry support - far exceeding
that of other open-source ISAs - therefore suggests that it has potential to become a major competitor to
Arm (particularly for embedded and edge-computing devices) and in the longer-term also to x86.

Whilst many companies adopting RISC-V are still creating proprietary microarchitectures to manufacture
or license, others such as Western Digital and SiFive have already open-sourced designs, and the Linux Foun-
dation’s CHIPS Alliance aims to support the development and distribution of open-source microarchitectural
designs [57]. Combined with open-source firmware such as Coreboot [58] and the already well-established
open-source software ecosystem, there is now potential for entirely open-source and fully auditable systems,
with open-source designs or code at every abstraction layer. From the perspective of reducing undocumented
behaviour to improve security, this is extremely promising. However, although proprietary RISC-V security IP
has been produced such as Dover Microsystems’ Coreguard [59] and Rambus’ CryptoManager Root of Trust
[60], very little public RISC-V security research has been conducted, and in particular not on the limited range
of hardware platforms currently available to consumers. A significant concern regarding open-source designs
is that open-source verification tooling is very limited in comparison to industry-standard tools [61]. It there-
fore seems timely to investigate whether undocumented CPU behaviour exists on current RISC-V hardware
platforms.

1.2.4 Leaky Abstractions

Hardware-enforced security isolation. In order to cope with the complexity of modern computer systems,
both hardware and software developers work with the physical implementation at varying levels of detail, known
as the hardware-software abstraction layers (depicted in Table 1.3). This has benefits for both productivity
and security (not to mention developers’ sanity): requiring a website developer to consider the effects their
code might have on the quantum tunnelling occurring in each user’s 7nm CPU transistors, for example, would
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be utterly absurd, whilst abstractions such as high-level languages protect developers from making memory-
management mistakes which compromise security. Typical security threat models depend on enforcement
of isolation between abstraction layers. We assume, for example, that the privileged device drivers will not
try to attack the operating system, and that the unprivileged user cannot access privileged operating system
memory, with this separation of privileged and unprivileged software layers enforced in hardware by the CPU’s
own privilege levels (see Section 2.2). The rise of virtualisation added the concept of a ’guest’ level with even
further reduced privileges. In a cloud computing setting with multiple customers processing sensitive data in
virtualised environments on the same hardware, it is crucial that this separation of privileges (and access to
data) is enforced.

Substantial research has been conducted into software vulnerabilities which compromise this separation
(enabling privilege escalation) through misuse of hardware enforcement. However, the hardware’s implemen-
tation of this privilege enforcement, and indeed the entirety of the hardware abstraction layers, has long been
assumed to be trustworthy. [24] suggests a range of reasons for this, notably that proprietary designs render
hardware a "black box", encouraging us to ignore its implementation; and that assessing hardware requires a
different skillset to software, with the two skillsets rarely being found together. This, perhaps, is the heart
of the problem: the CPU complexity explosion enabled parallel complexity explosions at every software and
hardware layer, so that each layer requires different skillsets. With no developer now able to comprehensively
understand the system, they must therefore blindly trust the security guarantees layers beyond their own claim
to provide.

A major weakness in hardware-enforced security isolation is the gap between the ISA and the microar-
chitecture. As previously discussed in Section 1.1, the ISA guarantees portability of software across different
microarchitectural hardware implementations. However, this microarchitectural agnosticism introduces weak-
nesses which render insecure any setting in which untrusted code shares hardware with trusted code. This
occurs on every modern computer. It is common to run multiple software applications together, and each
website you visit also runs untrusted code; even with only a single application running, it shares hardware with
the privileged operating system and drivers (which - we hope - are trusted code). And of course, this hardware
sharing is drastically pronounced in a cloud computing setting. Such hardware sharing introduces resource
contention which produces exploitable side channels.

Side channels and transient execution. A side channel is any aspect of a system which unintentionally
leaks information [62]. Polygraphs attempt to exploit side channels in humans: they monitor changes in
physiological indicators such as cardiovascular activity and respiratory activity which may indicate a person’s
deceptiveness, although their accuracy is disputed [63]. Similarly, computer systems have side channels such
as power consumption, acoustic emissions, electromagnetic emissions, and - most crucially - timing. Early
side-channel attacks were limited by the requirement for physical access to a device, for example to measure
a smart card’s power consumption to infer its cryptographic key [62]. Timing attacks, however, can be con-
ducted remotely provided the ability to run untrusted code on a device. Some timing attacks are enabled
by insecure software implementations with secret-dependent timing, such as a password checking mechanism
which checks user input character by character and immediately aborts the check if a character is wrong.

Such software vulnerabilities can easily be patched once detected. However, there is now a growing body of
research targeting secret-dependent timing in hardware due to microarchitectural implementation details, and
this is far more challenging and costly to patch; in some cases, it is impossible, and only complete replacement of
the hardware will suffice. By ignoring microarchitectural side channels to provide a portable timing-independent
(and power-independent, etc.) specification, ISAs fail to provide adequate security guarantees, and this is the
basis for recent transient execution vulnerabilities such as Meltdown and Spectre. Microarchitectural features
so far found to be exploitable include the cache (see Section 2.2.3) and out-of-order execution [20], branch
prediction and speculative execution [21], execution ports [64] and simultaneous multithreading [65] [66],
interrupts [67], the floating-point unit [68], and the memory order buffer [69]. [1] provides a systematic
overview of many such attacks and proposed mitigations, although new attacks continue to be published
regularly. Section 2.2 provides technical details regarding the most relevant of these microarchitectural features.

Hardware roots of trust. Since the Roman era - and likely long before - designers of systems of all kinds,
from computing to politics, have grappled with the question of Quis custodiet ipsos custodes? (or, approx-
imately, "Who will guard the guards?") [70]. How should powers be separated and safeguarded to minimise
their exploitation? This is highly pertinent to the debate concerning government surveillance (see Section
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1.2.2) but also to the concept of ultra-privileged ’roots of trust’ in hardware. Safeguarding of powers is built
into many corporate IT infrastructures at the software level, for example via access controls and auditing
which ensure even system administrators cannot exploit their privileged access [71]. At the hardware level,
however, such safeguarding appears to have been completely abandoned, and various ultra-privileged security
coprocessors have been implemented in an attempt to provide a trusted execution environment for sensitive
data processing and to protect the integrity of the boot process and firmware (alongside other motives, such
as implementing digital rights management for audio and video).

Most concerning of these are the Intel Management Engine (ME) and AMD Secure Processor. They are
the most privileged components of the CPU - Intel ME, for example, has direct access to most of memory
[72] - and yet are frequently found to be vulnerable to remote code execution attacks, for the most part
enabled by buffer overflows, stack overflows, and other insufficient input validation (see [73] [74] for the Intel
ME and [75] [76] for the AMD PSP). Intel AMT was even found to accept an empty string in place of the
administrator password, permitting an attacker remote control of the system via the web interface [77]. Such
attacks illustrate manufacturers’ lack of concern for security in these ultra-privileged coprocessors. Bounds
checking coding errors are well known and numerous static analysis tools exist to detect them [78], but it would
appear that Intel and AMD were unable to check for these in the most security-critical section of the CPU.
Similarly, the AMD PSP does not implement common software and hardware stack/buffer overflow mitigation
techniques such as stack cookies, the NX flag, or address space layout randomisation (ASLR) [75]; the lack of
these techniques means that if an an overflow vulnerability is present, exploiting it to run arbitrary code is trivial.

Both the Secure Processor and ME are opaque and essentially unauditable, although there have been
promising reverse-engineering attempts to disable the ME [79]. Rutkowska highlights that this makes them
an ideal location for backdoors and malware, and that the trend of moving as many sensitive tasks as possible
to opaque coprocessors or enclaves is highly concerning for system openness and auditability in general [80].
Hardware roots of trust present the ultimate target for an attacker: once compromised, they could be used to
persist malware across even operating system reinstallation and reflashing of firmware.

1.3 Undocumented Instruction Behaviour
1.3.1 Undocumented Instructions
In early microprocessors of the 1970s and ’80s such as the Zilog Z-80, Intel 8086 and Motorola 6800, undoc-
umented instructions were common. Some were artefacts of the instruction decoder design: if the decoder
did not check every single bit (to minimize logic circuitry), an undocumented encoding similar enough to
a documented one would activate the same decoding logic, functioning as an alias for that instruction or
perhaps encoding an undocumented operand type [81]. Other undocumented instructions were deliberately
implemented, either for debugging purposes or in failed attempts to add new instructions: early fabrication
processes were unreliable, so to increase chip yield if the logic for a specific instruction were not fabricated
correctly it might simply be left undocumented on the die (rather than repeating the entire fabrication run) [82].

On the x86 architecture, the invalid opcode exception (#UD) was introduced with the 80186: the CPU
would no longer attempt to execute every instruction encoding presented to it. However, many undocumented
instructions still ran without an exception, including aad, aam, icebp, salc, and loadall [83]. The first four
are now at least partially documented (although in the case of icebp, it took Intel 30 years to document,
despite the fact the instruction triggers an entirely independent class of interrupt), whilst loadall is no
longer supported (its two encodings are now used for syscall and sysret). The latter was a particularly
interesting case: its purpose was for testing and debugging via in circuit emulation, and it enabled loading
’all’ registers (including some normally inaccessible microarchitectural registers) with custom values, thereby
permitting access to the entire memory address space. Although a privileged instruction, it enabled a level of
control over the system typically not possible even with ring 0 privileges. Documentation for the instruction
was only available from Intel under a non-disclosure agreement (NDA); although its existence on the 80286
was widely known, Intel denied its existence on the 80386 [84].

1.3.2 Undocumented and Poorly Documented Behaviour
Errata. No manufacturing process is perfect, and as discussed previously verification and test tooling has not
kept pace with increasing design complexity. Each CPU model therefore exhibits some physical defects, and
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those known to the manufacturer are published in errata datasheets. These are now available publicly online,
although the datasheets typically only contain brief descriptions, with the detail necessary to immediately
reproduce an erratum sometimes only available under NDA. For many years, it was standard practice for all
errata to be confidential and under NDA; there was concern that users might refuse to buy affected systems or
demand upgrades if they were aware of the CPU’s flaws [85]. Many errata result in undocumented instruction
behaviour, and two infamous cases of this affected certain steppings of the Intel Pentium. The fdiv bug
caused floating point division to return incorrect results, prompting a recall of affected CPUs at the cost of
$450 million to Intel [86], whilst the F00F bug (f0 0f c7 c8-f) meant that a single invalid (unprivileged)
instruction could halt the CPU permanently until it was rebooted. The latter is colloquially referred to as a
’halt-and-catch-fire’ instruction, after the hcf debug instruction mnemonic on the Motorola 6800 [82]. Errata
are often ambiguously described as causing "unpredictable system behavior" under "complex microarchitectural
conditions" [87] [88] [89]. Whilst manufacturers understandably wish to prevent malware developers exploiting
an erratum (particularly one which causes a machine check or hang), the lack of detail provided also makes it
impossible for legitimate developers to deliberately avoid triggering the erratum.

Poor documentation. Some CPU behaviour is not actually undocumented but is so poorly or misleadingly
documented that developer confusion leads to software vulnerabilities. The x86 pop ss/mov ss vulnerability is
a prominent example: "unclear and perhaps even incomplete documentation on the caveats" of the instructions
in Intel’s manuals led to a vulnerability across Windows, MacOS, Linux, FreeBSD, and various hypervisors
whereby an unprivileged user could crash the kernel, access kernel memory, or even run arbitrary code in kernel
mode, because a debug exception triggered in user mode could be delayed across a context switch into kernel
mode [90]. In other cases, documentation is ambiguous or inconsistent, for example in Intel documentation for
the ’undefined reserved opcode’ d6 or salc: Intel documentation variously claims both that it never generates
an #UD exception (Vol. 3A, Section 6.15) and that it generates it in 64-bit mode [91, Vol. 3B, Section 22.15
and Vol. 3A, Section 6.15]. Attempts at formally specifying the ISA have found many other such cases [92]
[93].

Confidential features. Manufacturers are known to implement so-called ’golden screwdriver’ features in-
tended for use only by certain customers, such as those purchasing a software-based CPU upgrade (as offered
by the Intel Upgrade Service from 2010-2011) or a specific high-volume customer who pays for custom features
to be incorporated into mainstream CPUs (rather than the more expensive option of creating separate custom
CPUs) [94]. Manufacturers have also been known to restrict documentation of new features under NDA in an
attempt to maintain their competitive advantage, as in the case of Appendix H in the Pentium manuals [95].
Similarly, undocumented debug and test mechanisms are common. Their ’security’ is sometimes dependent
on certain implementation details remaining confidential, such as register password values (e.g. 0x9C5A203A
on AMD) [96].

Differing ISA interpretations. x86 is typically considered a single coherent architecture across Intel and
AMD CPUs, and it would seem a reasonable assumption on the part of a developer that if their software is
implemented in accordance with AMD’s x86 documentation then it will also function correctly on Intel CPUs.
Ensuring software portability across microarchitectures is, after all, the very purpose of an ISA. However, in
practice the two manufacturers define certain details of the ISA very differently, and often in unclear or obscure
sections of documentation. There are several precedents of these architectural differences leading to software
vulnerabilities, including the bsf instruction enabling sandbox escape in Google’s Native Client [97] and the
infamous sysret privilege escalation [98].

Security concerns. HCF instructions are a serious concern for a system’s availability: if, for example,
unprivileged code could halt a server CPU hosting cloud infrastructure services then an attacker could easily
conduct a denial of service (DoS) attack. This is likely to result in data loss for other current users of the
system (for example if there are pending writes to disk at the time of the hang). Similarly, defects such as
fdiv are a concern for data integrity. Many other types of undocumented instruction behaviour pose a threat
to a system’s confidentiality. An undocumented instruction might create a microarchitectural side-channel;
this is already known to be the case with documented instructions such as clflush and prefetch [99].
Undocumented debug mechanisms or backdoors might enable total compromise of the system; whilst this may
initially sound far-fetched, there are alarming precedents such as a debug instruction on Via x86 processors
(unprivileged by default on certain models) which unlocks an alternate instruction set providing complete
privilege escalation and control over the system [100].
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10000010100100001000001010010011 addi t0 ,ra , -2007
10000010100100001000001010010010 illegal ; c.mv t0 , tp

Listing 1.1: Modifying a single bit transforms the 32-bit ADDI instruction into two compressed instructions,
one undocumented.

Case study. Listing 1.1 shows two possible encodings of 32 bits in the RISC-V ISA. Note that, as in the
RISC-V specification, bits are numbered right to left, from 0 to 31. The first is a 32-bit addi instruction,
which adds the immediate value -2007 to the return address register ra. The value 11 in bits 1:0 encodes the
instruction’s length of 32 bits. However, if we change just one of these instruction length bits so that bits
1:0 are now 10, it will instead be interpreted as two 16-bit instructions from the Compressed extension: bits
15:0 encode a c.mv instruction, and bits 31:16 encode a reserved instruction. This instruction hasn’t been
defined in the instruction set specification yet, so if we try to execute it on a RISC-V platform such as the
SiFive HiFive Unleashed then the CPU should produce an illegal instruction exception.

Except it doesn’t: it executes with no exception at all! What just happened? Did it do anything? When
we compare the CPU’s register values before and after we see no change. Did it change some other aspect
of architectural state - perhaps it stored a value into memory, or simply moved the value of one register into
the same register? Or did it cause no architectural state change, but rather a microarchitectural state change
(such as loading a value into the cache) which could be exploited in an attack? Given that bits in memory
can be flipped by a remote unprivileged attacker using the Rowhammer attack [101] [102], it is plausible that
an attacker could maliciously modify our addi instruction in this way. We have no idea what this instruction
does, and our lack of tools to answer this question is the motivation for this project.

1.4 Prior Work
CPU security. As discussed in Section 2.2, there has been considerable research into transient execution
attacks since the disclosure of Meltdown and Spectre [20] [21] in January 2018. However, despite this volume of
transient execution research other CPU security topics remain severely under-researched, with undocumented
instruction behaviour representing a particular gap in the literature with very little existing work.

Fuzzing. Fuzzing is a testing technique involving automatically generating large quantities of malformed or
unexpected inputs (either systematically or randomly) and observing their effects on a system. The aim is to
find inputs which transition the system into a weird state, indicating a vulnerability which can subsequently
be fixed (if using fuzzing for verification or penetration testing) or exploited (as such tools are also used
maliciously). Whilst fuzzing’s concept is unsophisticated, it has proved effective for bug and vulnerability
detection and has been adopted into the secure development practices of major technology companies such as
Google and Microsoft [103]. However, the vast majority of fuzzing tools target software rather than hardware,
and the research literature reflects this: two recent surveys, for example, define fuzzing exclusively in the
context of testing software [103] [104]. In this project fuzzing is applied instead to CPU instructions.

Undocumented instruction fuzzing. Some CPU manufacturers use instruction fuzzing (also known as
Random Instruction Stream/Sequence (RIS) generation) as part of their verification process, but the process
is not documented in detail [105]. There has been very limited public research into instruction fuzzing or un-
documented instruction behaviour. Two direct predecessors to this project are the 1995 paper by Sibert et al.,
the first in-depth security analysis of x86, which highlighted the need for CPU auditing tools [24], and Domas’
open-source Sandsifter tool for x86 CPU fuzzing, which contributed the tunneling algorithm for searching the
instruction space (see Section 2.3.1) and found numerous security concerns due to undocumented instruction
behaviour [5]. Other related research includes Domas’ methodology for fuzzing undocumented model-specific
registers via a timing attack [106] and the ’CPU Security Benchmark’ tool of Zhu et al [107]. The latter
claims to be the first comprehensive CPU security tool, detecting undocumented instructions, compromise
of control flow integrity, memory errors, cache side-channels, and transient execution vulnerabilities. If made
available publicly, such a tool would be a tremendous contribution to the field; however, it has not yet been
released and the authors’ description of their undocumented instruction detection raises some concerns about
its feasibility (such as the confusion of the terms CISC and RISC with specific ISAs, and their claim to achieve
full coverage of the instruction search space).
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Given this prior work, why develop another fuzzing tool? Firstly, whilst Sibert et al. highlighted the need
for further penetration testing of CPUs and stated that a penetration testing suite would be produced in sub-
sequent research, there appears to be no public version of their tool. As the research project was conducted
as part of the US National Security Agency’s Trusted Product Evaluation Program, it may perhaps have been
developed and retained for internal agency use only. The Sandsifter project produced a valuable initial tool for
the field, but it suffers from numerous flaws. It finds many false positives, as the Capstone disassembler it uses
does not recognise all documented x86 instructions; it does not infer the functionality of an undocumented
instruction, or provide any data for manually determining this (e.g. register state changes); and it assumes
that #UD faulting instructions must be permanently invalid (see Section 4.2.2).

The strongest motivation however, is that despite this initial research there is little ongoing public work
in the area. As discussed, the instruction space on x86 is vast, and therefore many research questions remain
unanswered without improved tooling to support their investigation. Sandsifter is not currently publicly main-
tained; Domas has reportedly continued developing Sandsifter and investigating undocumented instructions,
but has not made this research publicly available, and was unavailable for comment during this project. A
"major update" to the tool and full details of an x86 HCF instruction were scheduled to be presented at
Shakacon 2018 [108], but no details of the presentation have been released. One promising fork of the tool
is Baresifter, which aims to produce a bootable instruction fuzzer [109]. Baresifter’s approach is particularly
interesting because running without an operating system enables testing in CPU modes other than long 64-
bit mode (for 64-bit CPUs with a 64-bit OS) or legacy 32-bit mode (for 32-bit CPUs). The disadvantages
however are that a bootable tool is less portable across architectures, and that undocumented behaviour has
greater potential to damage the system (e.g. by overwriting files) without the memory protection offered by
an operating system. Unfortunately the tool is still under development and too incomplete to test for this
project.

OpcodeTester. This relative lack of research and development motivated a research project I conducted
into undocumented instruction behaviour in 2018, which identified the weaknesses of Sandsifter for the first
time and produced the open-source OpcodeTester tool [2]. I identified several areas for further work, including
improving the stability of the tool, developing improved search strategies for the instruction space, investigating
the instruction decoder (particularly with regard to a bug identified in kernel mode, see Section 4.4.1), and
testing for potential transient execution of #UD faulting instructions. This project aims to research these areas
and extend the tool correspondingly to facilitate further research into undocumented instruction behaviour. A
severe limitation of the project was that it was conducted on a single 64-bit x86 microarchitecture. With this
project, I will ensure the tool is portable across Intel microarchitectures (in particular testing on a 32-bit x86
microarchitecture for the first time) and compare the results on each.

RISC-V. Excepting [107], all existing tools (including OpcodeTester) support only the x86 architecture, and
there is no publicly-available research concerning undocumented behaviour on RISC-V. Given RISC-V’s grow-
ing popularity and the known deficiencies of current open-source verification tooling [61], it seems timely to
also port OpcodeTester to this architecture to provide a tool for auditing of RISC-V CPU behaviour, and to
investigate undocumented behaviour on existing RISC-V CPUs.

1.5 Project Aims
The objective of this project is to further develop my OpcodeTester tool - extending it and porting it to
the RISC-V architecture - and to use it to conduct experiments investigating undocumented instructions
and undocumented instruction behaviour from a security perspective. Undocumented behaviour is known
to introduce security vulnerabilities, and there is a clear gap in the literature: the topic is seriously under-
researched on x86 and this is the first project to investigate it on RISC-V. My experimental hypotheses are
motivated by unanswered questions from my previous research project. By releasing the tool as open-source I
hope to make security auditing of CPUs more accessible and to encourage further research in this area. More
concretely, the project’s aims are to:

1. Research and survey literature on CPU security and undocumented CPU behaviour, and provide an
accessible introduction to CPU security.

2. Produce an undocumented instruction testing tool cross-compatible with the x86 and RISC-V architec-
tures, and publicly release it as open-source.

11
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3. Use the tool to conduct experiments into undocumented instruction behaviour on the microarchitectures
under test (Intel Bonnell and Broadwell for x86, and SiFive Freedom E310 and U540 for RISC-V):

• Hypothesis 1: undocumented instructions exist on the microarchitectures under test.
• Hypothesis 2: undocumented exception and/or instruction decoding behaviour occur on the mi-

croarchitectures under test.
• Hypothesis 3: #UD-faulting undocumented instructions are transiently executed and leave mi-

croarchitectural traces after rollback on Intel Broadwell (the only microarchitecture under test
supporting transient execution).

4. Assess the scope for further research into undocumented instruction behaviour and for further develop-
ment of tools for such research, and the outlook for CPU security in general.

12



Chapter 2

Technical Background

"There are some undocumented
internal-use MSRs used for low-level
hardware testing purposes. Attempts to
read or write these undocumented MSRs
cause unpredictable and disastrous
results..."

VIA Technologies [110]

Security and computer architecture are both complex fields and a comprehensive introduction to either would
be far beyond the scope of this chapter. Instead we provide here a brief introduction to security and archi-
tectural concepts crucial to understanding of the project, before describing the instruction set architectures
and microarchitectures under test. For further reading on computer architecture, see [7]; similarly for security
applied both within and beyond the context of computing, see [111].

2.1 Security Concepts
"Many well-meaning persons suppose that the discussion respecting the means for baffling the
supposed safety of locks offers a premium for dishonesty, by showing others how to be dishonest.
This is a fallacy. Rogues are very keen in their profession, and know already much more than we
can teach them respecting their several kinds of roguery...If a lock...is not so inviolable as it has
hitherto been deemed to be, surely it is to the interest of honest persons to know this fact" - A.
C. Hobbs, 1868 [112]

Offensive security. This project approaches security from an offensive perspective, with the premise that
vulnerability research is an essential complement to the defensive perspective of designing security mechanisms.
As the quote above highlights, debate has long raged concerning vulnerability research and its potential to
compromise so-called ’security by obscurity’, whereby systems rely on secret mechanisms or password values
whose security depends on their confidentiality. Modern critics have argued against vulnerability research on
both economic and ethical grounds [113]. However, like Hobbs I argue that security by obscurity offers no
security at all. As in the case of the TSA locks in Section 1.2.2, their secrets are likely to eventually be
reverse-engineered by or leaked to the ’rogues’, and it is ’in the interest of honest persons’ to discover that
such insecure mechanisms exist, ideally before the rogues do - although they probably already know! Offensive
security practices such as penetration testing, red teaming, and bug bounty programs have been adopted
in major organisations both within and beyond the technology industry, and responsible (or coordinated)
disclosure practices which significantly reduce the risk of harm from public disclosure of security vulnerabilities
are now the norm [114]. This project was conducted on this ethical basis, with a commitment from the outset
to responsibly disclose any security vulnerabilities discovered.

The weird machine. The computational system a hardware or software developer intends to implement can
be described as a finite state machine, with a set of sane states and a set of sane transitions between these
states, i.e. the states and transitions which the developer anticipates. This intended finite state machine
(IFSM) is the bug-free, idealised version of the system. The IFSM is then emulated by the hardware or

13



2.2. ARCHITECTURAL CONCEPTS

software implementation; this may be a perfect emulation, or - as is far more likely - it may have bugs. A bug
or vulnerability is anything which puts the system into a weird state, i.e. a state which has no equivalent in the
IFSM. This may be due to human error in the implementation, a hardware fault, or a ’transcription error’ when
communicating the implementation (e.g. a manufacturing error when attempting to reproduce the provided
design). The weird machine is the new computational system produced by applying the emulated transitions
of the IFSM to one or more weird states, i.e. the results of the system continuing as normal despite being
in a weird state. Weird states and transitions may enable an attacker to compromise the system’s security
properties, for example enabling them to bypass a password mechanism to access confidential data, and so
from a security perspective the aim of fuzzing is to identify if any of these weird states and transitions exist.
This theoretical framework (formalised by Dullien in [16]) highlights one of the most fundamental challenges
in computer security: containing latent computational power. Even a seemingly minor vulnerability can lead
to a weird machine which provides an attacker with powerful capabilities.

Vulnerabilities, exploits, and attacks. This project uses Dullien’s definitions of vulnerabilities, exploits,
and attacks in the context of the weird machine [115]. As discussed, a bug or vulnerability is a method for
transitioning the system into a weird state; an exploit is a program or other sequence of actions which uses
a vulnerability/bug to produce a weird machine and then uses this machine to violate one or more security
properties of the system; and an attack is an event where an exploit is used maliciously. A vulnerability/bug
is not necessarily exploitable, but given the latent computational power of a typical system it is highly likely
that it is, even if this potential is not apparent when it is initially discovered. The attack surface is the sum
of all known, unknown, and potential vulnerabilities across the entire system, minus those which are (reliably)
protected against by security mechanisms [31].

Trustworthiness principles. [116] provides a good overview of other overarching security and trustworthiness
principles. Principles such as least privilege, separation of privilege, and minimisation of what has to be
trustworthy (i.e. the trusted computing base, or TCB) directly informed this work. In particular, the concept
of predictably-composable principled architectures is highly relevant: abstraction is necessary for the design
of complex systems, and can improve security when designed correctly, but the current leaky abstraction
layers must be replaced with abstractions which can be securely composed together without requiring in-depth
knowledge of lower layers.

2.2 Architectural Concepts
2.2.1 Exceptions and Interrupts
Exceptions and interrupts are events which the CPU must respond to. Interrupts are asynchronous signals
typically from hardware external to the CPU, whilst exceptions occur when the CPU detects an error condition,
such as attempting to run an illegal instruction or access an invalid memory address. The operating system
must set up exception and interrupt handlers providing code for the CPU to run when such events occur. If a
user program causes an exception, the operating system sends a signal to the program; the default behaviour
for most signals is to kill the user program. However, a program can also register a signal handler to resolve
the error condition by itself and continue running, which is necessary when testing undocumented instructions
as exceptions are a constant occurrence. The vast majority of undocumented instructions fault with an illegal
instruction exception (#UD on x86 and exception 2 on the HiFive Unleashed and HiFive1), whilst others fault
with memory-related exceptions, commonly referred to by the legacy term ’segmentation fault’ (on x86 mem-
ory violations typically produce the #GP exception, whereas the HiFive boards subdivide memory exceptions
into different categories with exceptions 0-1 and 4-7). Note that only the HiFive1’s exceptions are referred to
by number in this work; the HiFive Unleashed runs Linux and so its exceptions are referred to by their POSIX
signal codes (4 or sigill for an illegal instruction and 11 or sigsegv for a segmentation fault). Other less
common exceptions include debug exceptions or divide errors.

Exceptions are typically classified as faults, traps, or aborts [91]. A fault is an exception that can usually
be corrected; the CPU restores the architectural state to its state before the faulting instruction, and execution
resumes at the faulting instruction rather than at the instruction following it. As exceptions such as #UD
and #GP are faults, a user program signal handler for these must modify the instruction pointer to prevent
the faulting instruction repeatedly being executed and faulting again. A trap such as a debug exception does
not restore state and resumes execution after the trapping instruction, whilst an abort is an exception which
cannot be recovered from (such as a severe hardware error). Page faults are the one exception type which do
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not indicate an error condition: whilst they must be handled by the operating system, they are an essential
component of paged memory management rather than an error, and user programs do not have to handle
them manually.

2.2.2 Instruction-Level Parallelism
Not every instruction takes the same amount of time to run. Ideally, every instruction would complete in just
a single cycle, but there are inevitably bottlenecks which slow down certain instructions. A load instruction
must wait for memory to return the requested value, and memory is far slower than the CPU, whilst complex
arithmetic operations such as division can require many cycles (the E51 core in the HiFive Unleashed, for
example, has a latency of up to 65 cycles for division [117]). Instruction-level parallelism techniques seek to
reduce the number of cycles wasted due to these latencies. Some techniques can be applied by the compiler
to optimise code before it is ever executed, but some parallelism is only apparent dynamically at runtime;
the instruction-level parallelism techniques discussed here are implemented in the CPU itself to exploit this
dynamic parallelism.

Pipelining. Since the mid-1980s, pipelining has been ubiquitous in CPUs to improve instruction throughput
[7]. Akin to a factory assembly line, the lifecycle of an instruction is separated out into logically distinct
stages so that the CPU can overlap multiple instructions. For example, if we split the lifecycle up into an
extremely simple three-stage ’fetch/decode - execute - commit’ pipeline we can have up to three instructions
in the pipeline at once: provided the stages are implemented by separate functional units, one instruction can
be fetched and decoded whilst, simultaneously, another is executed and the results of another are committed
to architectural state. This increases instruction throughput. However, hazards in the pipeline pose a major
challenge. Structural hazards occur when the CPU does not have sufficient functional units or other resources
to overlap certain instructions; this can occur with complex instructions such as floating-point divide which
require sub-pipelining of the execution stage, with the relevant functional unit unavailable for multiple cycles
until the sub-pipeline has completed. Far more common are data hazards, where an instruction depends on
the (not yet committed) result of a previous instruction in the pipeline, and control hazards due to branching.
Techniques such as forwarding, i.e. passing a not-yet committed result to an instruction that requires it,
can resolve some hazards, but if the hazard cannot immediately be resolved then the pipeline must stall the
instructions following the hazard until it is resolved.

Superscalar and out-of-order execution. An obvious next step is to provide more than one functional
unit per stage so that multiple instructions can be processed simultaneously at each stage, which is known
as superscalar execution. However, if instructions are executed in-order then the performance benefit of this
is limited, as having more instructions in the pipeline significantly increases the rate of hazards and entails a
greater cost when the pipeline must be flushed. What if the instruction stream could be reordered to reduce
hazards? This is the premise of out-of-order execution. Instructions are tracked in a reorder buffer so that
they can be executed out-of-order - as and when the operands and resources they need are available - and
then committed (or retired) to architectural state in-order from the reorder buffer so that users and software
developers (in theory) never notice that computation was reordered. Data hazards can further be reduced
with register renaming, which eliminates name dependencies: where two instructions use the same register but
no value is transmitted between them (e.g. they both happen to write to register 2), their registers can be
renamed so they are using different physical registers and do not interfere with each other. CPUs support this
by having a much larger set of physical registers than the set offered to developers in the ISA (the architectural
registers), providing sufficient capacity to maintain multiple copies of each architectural register.

Branch prediction and speculative execution. Out-of-order execution helps reduce data and structural
hazards but does not reduce control hazards. Branching is extremely common in software and so mitigating
control hazards is crucial. The simplest options for handling branches are to either flush the pipeline when a
taken branch is detected (as the instructions following the branch should no longer be executed) or to stall
until the result (taken or not taken) is known; these both have a high performance cost, however. Equipping
the fetch/decode stage with branch prediction helps reduce this performance impact: unconditional branches
can be taken immediately to redirect instruction fetching (so no flushing is necessary) and the outcomes of
conditional branches are predicted to also redirect fetching. Outcomes can be predicted with various techniques,
from simply assuming that branches will always be taken, to maintaining extremely complex histories of previous
branches (as in typical software branches are likely to happen repeatedly, such as in loops). The true benefit
of branch prediction, however, is realised when the instructions fetched on the basis of predictions are also
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Figure 2.1: A typical desktop/server memory hierarchy. Image reproduced from [7].

executed before the branch outcome is known, which is known as speculative execution. As with out-of-order
instructions, speculatively executed instructions are not committed from the reorder buffer until their branch
prediction is known to be correct to avoid erroneously modifying architectural state, and are flushed from the
buffer in the event of a misprediction. However, microarchitectural changes (such as data loaded into the
cache) are not rolled back, and it is the microarchitectural effects of these ’transient’ speculative or out-of-
order instructions - in combination with precise exception handling, where exceptions (such as a failed memory
privilege check) are only generated at commit time so that they occur in-order rather than out-of-order or
speculatively - which enable transient execution vulnerabilities.

2.2.3 The Memory Hierarchy
An ideal computer system would have unlimited quantities of fast memory. However, computer architects have
been struggling with the reality of the trade-offs necessary since 1946 [7]. Faster memory is both costly and
power-intensive, and larger memory is inherently slower to access because addressing entails more complex
logic across greater distances. Fortunately, most programs access data and code with temporal and spatial
locality : the most recently-used data/code is likely to be needed again soon (temporal locality) and data/code
close to a recently-used region is likely to also be needed soon (spatial locality). This enables memory to be
structured hierarchically. As shown in Table 2.1, a small set of very fast memory (the registers) is located
closest to the CPU and used for the most recently-used data. This is followed by larger and slower layers of
cache memory, the Random Access Memory (RAM), and finally the exceptionally slow but large hard disk or
solid state drive (HDD/SSD).

When a program accesses a memory address, the CPU searches up the hierarchy for its value. In the
event of a cache hit (the value is already in a cache), the value can be returned significantly faster (approx.
1-20ns, depending on the cache level) than if a cache miss occurs and the value must be obtained from RAM
(50-100ns). If this occurs, the value and a certain number of neighbouring values (together comprising a
cache line) are moved together into the cache to exploit temporal and spatial locality. If any given cache
is full, a previous cache line must be evicted. Multiple cache lines are commonly grouped into cache sets
and the number of lines per set is known as the cache’s set associativity (or ’wayness’, e.g. 4-way). Cache
implementations vary, with a variety of trade-offs involved such as addressing overhead and miss rate, but
typically a portion of a cache line’s starting address is used as an index to determine the line’s location in
the cache. In a 1-way (direct-mapped) cache, a given cache line will always be placed in the same location,
whereas in a fully-associative cache a cache line can be placed anywhere; most caches compromise in between,
with a 4-way set associative cache for example mapping a line onto a set and then placing the line at one
of four possible positions in the set [7]. As each CPU core may have its own caches and operate on the
same addresses as another core, consistency of values must be maintained across cores via a cache coherency
policy; to facilitate this, the last level cache (L3 in current desktop CPUs) is typically inclusive across cores,
containing all the cached data held in the per-core caches.

Unfortunately the timing differences induced by this memory hierarchy create the potential for cache
side-channel attacks, which exploit timing of memory accesses and cache operations to determine if a victim
process has accessed a certain memory address. Although this leaks access patterns rather than data explicitly,
if the victim process makes data-dependent memory accesses then the access pattern reveals the data. In the
Flush+Reload attack [118], for example, an attacker evicts a cache line of data from a shared memory page
with the clflush instruction, waits whilst the victim potentially accesses the address, and then measures the
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Ring 3 (unprivileged user mode)
Ring 2 (unused)
Ring 1 (unused)

Ring 0 (privileged kernel/OS mode)
Ring -1 (hypervisor)

Ring -2 (system management mode)
Ring -3 (Intel ME / AMD PSP)

Figure 2.2: Privilege rings on x86 (negative rings unofficial).

User mode
Supervisor mode
Machine mode

Figure 2.3: Privilege levels on RISC-V.

time taken to access the address. If the victim accessed it there will be a cache hit; otherwise there will be a
cache miss. The timing difference between these two cases is substantial enough that they can be distinguished
even when the attacker’s access to architectural timing mechanisms is limited [22].

2.2.4 Privilege Levels
As discussed in Section 1.2.4, security threat models rely on hardware-enforced security isolation between
abstraction layers. Such isolation is now known to be vulnerable to cross-layer attacks exploiting hardware
side-channels via software. Traditional privilege layer models also violate the principle of least privilege, as the
most privileged layers typically exercise absolute power with no safeguards. Table 2.2 and Table 2.3 present
the privilege levels used on x86 and RISC-V.

On x86, rings 1 and 2 (originally intended for drivers) are almost exclusively unused, which has given rise
to the simplification of ’privileged’ (operating system/kernel) and ’unprivileged’ (user mode) code. Rings -1
through -3 are unofficial terms used to describe the extra-privileged access permitted to three aspects of the
system excluded from the traditional abstraction layers: the hypervisor (for virtualisation), system management
mode, and hardware roots of trust (Intel ME / AMD PSP). RISC-V uses the privilege levels of user mode,
supervisor mode, and machine mode, approximately corresponding to ring 3, ring 0, and ring -2 respectively
[119]. Note that the RISC-V privileged ISA specification is still in draft, and a former hypervisor privilege layer
has been removed from the hierarchy.

2.2.5 Instruction Set Architectures
To expand upon their initial description in Section 1.1, beyond specifying the instructions a CPU can execute
ISAs also specify how these instructions are encoded and the runtime CPU state accessible by programs,
in particular the size and number of architectural registers which are available. ISAs can be classified in
numerous ways, but the most crucial distinction is between RISC (Reduced Instruction Set Computer) and
CISC (Complex Instruction Set Computer) ISAs. RISC ISAs feature primarily single-cycle, fixed-length simple
instructions; this decreases hardware complexity and makes pipelining straightforward. In contrast, CISC ISAs
typically feature variable-length instuctions supporting highly complex functionality and a variety of addressing
modes (in particular memory-to-memory) [7]. This simplifies compilation and improves code density, thus
reducing memory requirements. However, it essentially transfers the compiler’s burden into hardware, as this
entails increased hardware complexity.

Microcode. A common strategy to counter the complexity of CISC ISAs is to make substantial use of
microcode, essentially a second more RISC-like instruction set which the ISA’s instructions are translated into,
and which is the instruction set actually implemented in hardware. Simple instructions may map directly to a
single micro-operation (referred to here by the x86 abbreviation µop), whilst complex instructions may map to
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a long program of µops requiring many cycles. On x86 these microcode ’programs’ can be updated via non-
persistent runtime patches applied by the firmware or operating system. This brings the concept of software
patching to hardware and is extremely useful for mitigating hardware bugs quickly and cheaply without any
need for hardware replacement. However, it also poses the risk of a malicious microcode update, which might
for example modify the microcode of cryptographic instructions to weak encryption. As x86 microcode is
opaque (updates are encrypted and undocumented) such an attack would be challenging to conduct but also
extremely difficult to detect.

Model-specific registers (MSRs). These are control registers used to modify the CPU’s low-level function-
ality which typically require a privileged instruction (ring 0 on x86, or machine mode on RISC-V) to access.
This is to prevent a malicious unprivileged user using them to change the system’s behaviour. They are typi-
cally intended for test and debug purposes, although they can also play a role in the boot process and firmware
update mechanisms, and can disable hardware features if they are found to be flawed after manufacture [120].
Many MSRs are undocumented and may only be disclosed under NDA (for example to OEMs) or remain solely
known to the manufacturer. Documented MSRs relevant for this project include the hardware performance
counters: typically, a microarchitecture will provide a set of MSRs for selecting microarchitectural parameters
to measure (such as the number of instructions executed or retired) and counter registers to read the measured
values from. These are intended for performance benchmarking but have also been used for exploit detection
[121] and reverse-engineering microarchitectural implementation details [122].

2.2.6 The CPU Pipeline
As Broadwell is a die shrink of Haswell with no substantial microarchitectural changes (see [123]), at this
high level of abstraction the two microarchitectures are identical, and so the pipeline details in this section are
highly relevant to Section 2.3.1. This section particularly focuses on the front-end decoding process to provide
background for the investigation of decoding in Sections 4.2.3 and Section 4.4.2. Many of these details are
also more broadly applicable to Intel CPUs in general; the reference for this section, [123], provides details of
all recent Intel microarchitectures.

Figure 2.4 illustrates the pipeline stages in the Intel Haswell microarchitecture. Conceptually, the Haswell
pipeline is split into three sections: an in-order front-end, an out-of-order engine and an in-order retirement
stage. Within the pipeline, instructions are split into µops as described in Section 2.2.5. As discussed in 2.2.2,
branch prediction enables speculative execution of instructions before the outcome (or target address) of a
branch is known. Modern Intel microarchitectures make extremely aggressive use of speculation. The branch
prediction unit (BPU) makes predictions for 32 bytes at a time; this is double the rate of instruction fetching
into the pipeline (16 bytes) so there is effectively no penalty for predicting that branches are taken. The exact
details of the BPU are proprietary, but it is known to include units for tracking the history of branch outcomes
(taken or not taken), branch targets (the branch target buffer, or BTB), and return addresses of function calls
(the return stack buffer, or RSB) [21]. The BPU guides instruction fetching, fetching one 16-byte block of
instructions into the front-end per cycle from the predicted address. It fetches the block from (in order of
preference):

• The decoded instruction cache (decoded icache), which caches µops output from the decoders rather
than instructions;

• The instruction cache (icache) in the legacy decode pipeline, which caches full instructions;

• The L2 cache (which caches instructions and data together);

• The last level cache (LLC);

• Or, as a last resort, memory.

The legacy decode pipeline consists of the instruction translation lookaside buffer (ITLB), instruction
cache, predecode unit, and decoders. ’Legacy’ might suggest that this pipeline is rarely used, but it is in fact
always used the first time an instruction is executed. If that instruction is used again before it is evicted from
the decoded icache, however, it can skip the decoding process in this pipeline and be fetched immediately
from there (this occurs for >80% of µops, according to Intel’s estimates). First, the ITLB is used to perform
a lookup into the icache to fetch a 16-byte block. This is processed by the predecode unit, which determines
instruction lengths and marks instruction boundaries and properties (such as "is a branch") for the decoders.
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Figure 2.4: A pipeline diagram (depicting execution flow rather than physical layout) of an Intel Haswell
microarchitecture core. The Intel Broadwell microarchitecture is extremely similar and at this high level of
abstraction is identical. Image reproduced from [123].

It is slowed down by three cycles per length changing prefix (66 and 67), which is important to bear in mind
when analysing decoding timings/cycles (as in Section 4.2.3 and Section 4.4.2). The marked instructions are
sent (via the instruction queue) to the four decoding units, which translate each instruction into µops. Three
of these decoders can only handle single-µop instructions, with the fourth translating instructions of up to four
µops. Very complex instructions involving >4 µops come instead from the microcode sequencer. These are
the only instructions affected by microcode updates. If a runtime microcode update modifies an instruction’s
microcode, then the update’s µops are fetched; otherwise, the µops permanently encoded into the MSROM
(microcode sequencer ROM) are fetched at a rate of 4 µops per cycle. Note that microfusion and macrofusion
can also occur during these front-end stages: macrofusion merges two instructions into a single µop, whilst
microfusion merges multiple µops from the same instruction into a single complex µop.

After decoding, µops enter the instruction decode queue (IDQ). The IDQ contains a loop stream detector
(LSD) which can detect loops up to 56 µops long so each iteration’s µops can be issued directly from here; the
loop executes without its instructions being fetched/decoded until ended by a branch mispredict. It cannot
handle loops with call or ret instructions, mismatched stack operations, or more than 8 taken branches.
From the IDQ, µops enter the out-of-order engine. The renamer moves µops from the IDQ to their relevant
dispatch ports in the reservation station (RS, also called the scheduler), from where they are dispatched to an
execution port in the execution core. Each µop must be allocated an entry in the reorder buffer (ROB), an
entry in the RS, and a load/store buffer if it accesses memory, so if any of these resources are not available
then µops are stalled at the IDQ. As its name suggests, the renamer carries out register renaming (as described
in Section 2.2.2), but also various optimisation tasks. For example, certain register move operations can be
carried out here without entering the execution core, although of course their results are not committed ar-
chitecturally until retirement. The aim is to rename and reorder µops so that they can execute as efficiently
as possible, executing as soon as their their dependencies are met and resources are available (e.g. a relevant
execution port is free). Up to 192 µops can be "in-flight" in the out-of-order engine at once.

The RS can dispatch up to 8 µops per cycle (provided their dependencies are met and sufficient resources

19



2.3. ISAS AND MICROARCHITECTURES UNDER TEST

are available) as there are 8 execution ports specialised for different tasks. Ports 0, 1, 5, and 6 perform
arithmetic and logic operations, whilst ports 4-7 handle loads and stores from/to memory (see Figure 2.4);
branches are normally handled on port 6, with port 0 as a backup if resources are not available on port 6.
Each port has several ’stacks’ to handle different types of data, and moving results between stacks can incur
a delay, which is relevant when working with SSE, AVX, or the legacy floating-point x87 instructions.

Once executed, µops enter the retirement stage. They (and their results) wait in an entry in the ROB; the
ROB handles µops both in the execution core and in retirement, with the two strictly separate and allocated
half the ROB each. A µop does not modify architectural state until it is committed/retired in-order once all
previous µops have been committed and (if speculative) it has been confirmed to not have been on a branch
mispredicted by the BPU. However, within the pipeline results can be forwarded to µops in flight which require
them. The ROB ensures that exceptions occur in-order; other than aborts (which indicate a catastrophic event
in the processor), they are only ever generated at retirement.

These details are crucial for investigating undocumented instruction behaviour: in order to identify strange
and possibly undocumented behaviour, it is of course necessary to know what the normal documented behaviour
should be! The hardware performance counters enable (fairly) accurate measurement of the number of
µops passing through each of these units, allowing us to investigate unanswered questions such as whether
undocumented instructions might ever execute in the execution core and produce microarchitectural effects;
Section 4.4.2 presents experimental results regarding this.

2.2.7 Verification
Verifying a modern CPU is exceptionally challenging and compromises a substantial proportion of total de-
velopment time. The exact time required varies by manufacturer and by project. Arm, for example, estimate
that each CPU design undergoes more than 10,000 hours of verification, with additional time for system-level
validation (6,000 hours for the Juno CPU) [105], whilst Intel’s first formal verification of an entire execution
engine (for the Core i7 CPU) required "twenty person years" of work [124]. Such verification can be broadly
divided into dynamic verification (testing a simulation of the design, or an emulation using programmable logic
such as an FPGA) and formal verification (proving the design’s correctness with respect to a formal mathe-
matical specification). Dynamic verification is typically easier and faster to conduct, but suffers from limited
coverage. The ’complexity explosion’ of hardware has led to a corresponding explosion in possible states:
for example, as discussed in Section 2.3 it is impossible to exhaustively test every possible x86 instruction
encoding, even before one considers the vast array of architectural or microarchitectural states the CPU might
be in when it executes a given x86 instruction. Formal verification offers the potential to achieve full coverage
without resorting to exhaustive testing in simulation, which has motivated its increasing adoption at Intel [124].

Note that in the context of this project, all references to ’verification’ refers to functional verification, i.e.
ensuring that an implementation meets its functional specification. Other forms of verification not considered
here assess non-functional aspects such as layout or power consumption. Dedicated security verification
procedures also exist which verify security properties and information flow models; whilst valuable, functional
verification alone is currently sufficiently challenging that I believe the best progress that can be achieved for
security in the short-term via verification is to improve functional verification.

2.3 ISAs and Microarchitectures under Test
Instructions versus opcodes In this project, ’instruction’ is used to refer to any distinct encoding: two
encodings are considered distinct instructions even if they only differ by one operand bit. This contrasts
with other definitions which distinguish only functionally distinct encodings as distinct instructions, although
there has been considerable debate concerning what defines ’functionally distinct’. However, I believe this
definition is the most useful because it is the least ambiguous. By this definition of instruction there are
1,334,440,654,591,915,542,993,625,911,497,130,240 possible x86 instructions1 (a dire situation indeed for
fuzzing!) and 4,295,032,832 possible RISC-V instructions (considering only 32- and 16-bit instructions, i.e.
RVGC). [93] provides two alternative definitions: instructions are distinct if their assembly mnemonics differ, or
if their combinations of mnemonic and operand type differ (981 and 3,684 ’instructions’ on x86 respectively).

1This is 28 + 216 + 224 + 232 + 240 + 248 + 256 + 264 + 272 + 280 + 288 + 296 + 2104 + 2112 + 2120; as the meaning of previous
bytes may change when additional bytes are added, it is necessary to consider all possible encodings at all possible lengths, rather
than merely all possible 15-byte encodings.
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However, this approach fails when attempting to count undocumented instructions for which no mnemonics
exist. Depending on the consistency of instruction encoding in an ISA, it may be possible to define a set of
’functional’ bits, i.e. the only bits which are documented to alter instruction behaviour rather than encoding
operands, and define an instruction as any distinct encoding of functional bits. This is possible on RISC-V
(see Section 3.5) but appears to be impossible on x86 due to the ambiguity of instruction encoding.

What does it mean to be ’documented’? As discussed in [2], the Intel XED disassembler recognises
far more x86 instruction encodings than other disassemblers such as Capstone; most of Sandsifter’s results
appear to be false positives when checked against XED, and I therefore use XED as the ’golden reference’ for
which instructions are and are not documented on x86 in this project. However, the idea of an instruction
being ’documented’ is somewhat ambiguous. There are some x86 instructions which are supported only by one
manufacturer or on selected CPU models, and many more instructions which are so poorly documented as to be
almost undocumented. For example, the ffreep instructions (with the same functionality as the documented
ffree instructions plus an x87 stack pop) are named by XED but absent from Intel’s opcode maps. The
hex encoding and its behaviour is briefly mentioned in an obscure ’Architecture Compatibility’ section of one
manual [91, Section 22.18.9, Vol. 3B], but never referred to by name or defined in the main instruction set
reference manual. Can these instructions really be considered documented given they are not in the instruction
set reference? This ambiguity is a constant challenge when investigating x86. Michael J. Clark’s disassembler
is used as the golden reference for RISC-V [4]; fortunately, obscure and partially-documented instructions are
far less of a concern on RISC-V, although the continual evolution of the specification does result in certain
opcodes being implemented in only certain tools, or being documented only in GitHub commits of draft
specifications.

2.3.1 x86
The x86 ISA was introduced in 1978 with the Intel 8086 CPU. Since then, it has been expanded from 16-bit
word size to 32-bit and now 64-bit, and a wide variety of instruction extensions have been added such as x87,
MMX, 3DNow!, SSE, AVX, and TSX (with some extensions having redundant equivalents produced due to
intense competition between Intel and AMD [19]). Throughout this time almost complete backwards com-
patibility has been maintained, resulting in an extremely complex ISA with many deprecated and seldom-used
features, and thousands of pages of documentation. It is impossible to do x86 full justice here; of relevance
to this project are its instruction encodings, techniques for searching the instruction space, Intel TSX, and the
retpoline construct. [91], [123] and [125] provide further documentation. Note that all x86 encodings in this
work are in hexadecimal even where not marked as such with a ’0x’ prefix.

The original 16-bit ISA had 8 general purpose registers: ax (accumulator), bx (base address), cx (count
string/loop), dx (multiply/divide), sp (stack pointer), bp (base pointer), si (string source pointer), and di
(string destination pointer). The first four registers are further subdivided into high and low sections (e.g. ah
and al for ax) so they can also be used as 8-bit registers. These registers were then extended into exx versions
(e.g. eax) by the 32-bit ISA and into rxx versions (e.g. rax) by the 64-bit ISA, but even on the 64-bit ISA
the smaller register versions remain accessible. Other registers present since the original 16-bit ISA include
the segment pointers (cs, ds, es, fs, gs, ss), the instruction pointer (rip/eip/ip), the flags register for
condition codes (rflags/eflags/flags), 8 floating-point registers (st0-st7) and the floating-point status
register (fpsr). These are the most common registers; there are also control registers (cr0-cr15), debug
registers (dr0-dr15), and a vast array of registers for multimedia and SIMD (Single Instruction Multiple Data)
processing.

Instruction encoding. x86 instructions are variable-length. Any valid instruction must contain at the min-
imum a 1-3 byte opcode, which defines the instruction’s basic functionality. A nop instruction, for example,
is simply a single opcode byte, 90. However, many other opcodes require operands, i.e. displacement and/or
immediate bytes, which can each be up to 8 bytes in length. The ModR/M and SIB bytes are optional and
essentially extend the opcode with addressing information. The mod field of the ModR/M byte combines with
R/M to encode one of 32 possible register or addressing mode values, whilst the reg/opcode field specifies
either a register or 3 further bits of opcode information. The value of the reg/opcode field is written as /digit
(e.g. 0f 0d /1, where 0f 0d is a 2 byte opcode), which is pertinent to Section 3.7. The SIB byte is less
common and is used in combination with certain ModR/M encodings for base/scale-plus-index addressing;
see [91, Section 2.1.5, Vol. 2A] for full definitions of possible ModR/M and SIB combinations, and note
that some instructions encode addressing directly in the opcode instead. There are a wide array of possible
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Figure 2.5: The x86 instruction format. Image reproduced from [91].

prefixes: the legacy prefixes 26, 2e, 3e, 36, 64, 65, 66, 67, f0, f2, and f3, which control memory segments,
operand and address size, atomicity, and repetition for string operations; the REX prefixes 40 to 4F, which
extend the ModR/M and SIB bytes so that the 8 extra general-purpose registers added in the 64-bit ISA can
be addressed; the VEX and XOP prefixes C4, C5, and 8E, and the 4-byte EVEX prefix (62 00 00 00). VEX,
XOP and EVEX are essentially new instruction formats in themselves and can be used to encode instructions
with up to 5 operands.

Maximum length. Whilst Intel and AMD variously claim that only 4-5 legacy prefixes can be used, they are
largely irrelevant with most instructions (particularly in 64-bit mode with its limited use of segmentation) and
so instructions can be encoded comprising up to 14 legacy prefixes. Based on experimentation, this appears
to be a hard limit: any instruction longer than 15 bytes triggers a #GP exception, and an instruction must
contain an opcode, so 15 bytes of prefixes trigger this. This matches Intel’s and AMD’s documentation that
the maximum instruction length is 15 bytes. However, astonishingly there is some ambiguity regarding this
basic characteristic of the ISA. Hennessy and Patterson variously claim the maximum is 17 or 18 bytes [7,
p.A-23, p.K-41, p.14], but do not provide examples or cite their sources. It is unclear where these values
come from, as whilst the maximum instruction length has changed during x86’s development it has never
been documented to be 17 or 18 bytes; the Intel 8086 did not have a maximum instruction length, the 80286
introduced a 10 byte limit and a 15 byte limit has been documented since the 80386 [123].

Searching the instruction space. The astonishing complexity of x86 instruction encoding is an immense
source of frustration for instruction fuzzing. As discussed in Section 1.1, it is impossible to test all possible
encodings of 15 bytes in a feasible length of time. This naturally raises the question of whether the meaningful
search space could be reduced. One obvious approach is to attempt to cover most opcode encodings by
testing all encodings of 3 bytes (for a total of 16,777,216 encodings), which is explored in Section 4.2.3.
Ideally, all encodings of 5 bytes would be tested to also include the ModR/M and SIB bytes. However, this
increases the search space to a (currently) infeasible size of 1,099,511,627,776 encodings, and also reduces
stability as instruction encodings are so ambiguous: for many instructions these extra bytes will be interpreted
as immediate or address values rather than as ModR/M and SIB bytes. An alternative is the only known
algorithm developed for searching the space, the tunnelling algorithm introduced by Domas in the Sandsifter
tool [5]. It makes the assumption that changes in an instruction’s length indicate changes in functionality.
Starting from an initial instruction of 15 zero bytes, the instruction is executed, its length is determined, and its
last byte (based on its length) is incremented. This is repeated until the observed length changes, whereupon
the new last byte is incremented. If all possible values of the last byte have been exhausted with no length
change, the incrementation moves to the second-to-last byte. This reduces the search space down to under
1,000,000,000 instructions. This approach has the benefit that no prior knowledge of the instruction set is
required, which makes the algorithm portable across variable-length architectures provided it is possible to
determine an instruction’s length both when it faults and when it executes successfully. It is also more likely
to find deliberately concealed instructions than an algorithm guided by knowledge of the ISA (such as the
instruction encodings defined in the specification). However, the assumption that an instruction’s functionality
is solely determined by its length is substantial. Domas, for example, notes that a change in exception type
might also indicate a functionality change, but did not implement this in the publicly-available version of
Sandsifter [5].
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push ( address of escape )
call trampoline

speculoop :
pause
lfence
jmp speculoop

trampoline :
lea rsp , [rsp +8]
ret

escape :
...

Listing 2.1: An example retpoline.

Determining instruction length. Instruction length of valid instructions can be determined using the trap
flag, which triggers a #DB exception after a single instruction has executed. Using a user-mode signal handler,
the address of the instruction pointer reported in the exception can be obtained, and subtracting this from the
known start address of the instruction bytes provides the instruction length. However, this fails for faulting
instructions (such as privileged instructions, or instructions valid only in other modes) because these exceptions
take priority over #DB and report the start address as the instruction pointer. [5] overcame this by monitoring
page faults: one byte of the instruction is placed at the end of an executable page (with a non-executable
page following), the trap flag is set, and the instruction is executed. If the instruction is longer than one byte,
a page fault exception occurs with the CR2 register set to the address of the page boundary; otherwise, the
trap flag will trigger a debug exception. The exception type and CR2 value can be checked by registering a
signal handler, and then the process can be repeated with two bytes if the instruction length has not yet been
determined.

Intel TSX. Intel Transactional Synchronization Extensions (TSX) are a set of instructions introduced in
the Haswell microarchitecture for hardware transactional memory support. (The AMD equivalent is the pro-
posed, but not yet implemented, Advanced Synchronization Facility extension.) TSX essentially provides the
architectural illusion that instructions within a transaction are being executed as a single atomic instruction:
architectural updates will only be visible to other logical processors when the transaction completes, and
all memory operations will appear to have occurred instantaneously. If the transaction aborts before com-
pletion, all updates are discarded and the prior architectural state is restored. Two software interfaces are
provided: Hardware Lock Elision (HLE), and Restricted Transactional Memory (RTM). For the purpose of
this project, the crucial difference between the two is that if a HLE transaction fails then execution restarts
from the beginning of the HLE section (an instruction prefixed with xacquire), whereas a distinct fallback
path (akin to try/catch exception handling) can be specified for an RTM transaction. Developers "can use
any instruction safely inside a transactional region", but various conditions may cause a transaction to abort,
such as interrupts, exceptions (particularly page faults), certain instructions (such as syscall), setting the
Accessed/Dirty flags of a page table entry (which occurs on the first access/write to a page), conflicting data
accesses by other logical processors, or limited transactional resources. The transaction’s read set and write
set are tracked in the L1 cache, which means that on Haswell, Broadwell, and Skylake a transaction writing
to 9 or more different locations in the same cache set will abort [123]. Crucially however, whilst an exception
within an RTM transaction will cause an abort, the exception itself is suppressed and so no exception handling
is necessary. RTM provides a limited set of abort status codes placed in the EAX register for determining the
cause of an abort. In the majority of cases the status code is 0, and it is not possible to determine the cause
of the abort, for example to distinguish between a segmentation fault and an illegal instruction exception.
However, of interest to this project is that manual aborts due to the xabort instruction and debug exceptions
can be distinguished from other causes, respectively by bit 0 being set (with the argument provided to xabort
in bits 31:24) and by bit 4 being set [91].

Retpoline. A jmp or call is indirect when the address to transfer control to is not an immediate value: the
CPU must calculate or load the address. As this causes a delay, on Intel CPUs the indirect branch predictor
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speculates the target of the indirect branch and speculative execution occurs from this address until the branch
target address is determined. This is the basis for the Spectre v2 (branch target injection) vulnerability: an
attacker on the same CPU core can deliberately mistrain the indirect branch predictor in a process under their
control [21]. After the mistraining, speculative execution in the victim process will occur at the address of a
’gadget’ in the victim’s code. The gadget is a code sequence which unintentionally leaks sensitive data via a
side channel (e.g. it results in a data-dependent memory address being loaded into the cache, which can be
detected by the attacker with a cache timing attack). The retpoline is one of the primary mitigations for this
vulnerability, with sensitive code (the kernel and web browsers in particular) being recompiled so that all indirect
branches are replaced by the retpoline construct. Listing 2.1 shows one possible retpoline implementation
(note that on 32-bit architectures [rsp+8] should be replaced with [rsp+4]). First, the address of the actual
indirect target is pushed to the stack; the CPU’s indirect branch predictor is not influenced by this. Next,
an indirect call is made to the ’trampoline’ section. This section adjusts the stack pointer so that the ret
instruction will return to the address of ’escape’. However, the CPU incorrectly speculates that it will return
- as any normal function would - to the instruction immediately after ’call trampoline’, i.e. the speculative
loop (’speculoop’) section, and so speculatively executes from here. These instructions are specifically chosen
to trap speculation to avoid leaking sensitive data: the jmp instruction creates an infinite loop and then the
pause and lfence instructions somewhat inhibit speculation to mitigate the performance impact of this loop
(Intel are ambiguous about the exact effect they have on speculation; see [126]).

2.3.2 RISC-V
Full documentation of the ISA is available in [127], [119], and [128]. [129] discusses the ISA’s design choices
at length.

RISC-V is a new ISA under development since 2010. Originally designed at UC Berkeley for education and
research purposes, it is now being promoted as a free and open-source architecture for use across the entire
CPU industry. As a RISC ISA, it features far fewer, simpler instructions than x86, but is designed to be
highly extensible so it can be adapted for use in a variety of computing contexts. A RISC-V CPU must at a
minimum support either the base integer extension I or the base extension for embedded platforms E, but can
also be extended with instructions for multiplication and division (M), floating-point operations (F, D, and Q
for single, double and quad precision respectively), atomic instructions (A), and compressed instructions (C).
The terms RV32, RV64, or RV128 describe an implementation’s datapath width, and the extension name G is
used as a shorthand for extensions I, M, A, F, and D combined; the specification of these extensions has been
’frozen’ so that they are a stable implementation target for CPU designs. In comparison to x86, RISC-V is still
relatively volatile. Many extensions are still in draft (such as B for bit manipulation and V for vector opera-
tions), as are the privileged and debug instruction specifications and memory model [119] [128]. Instructions
are ’fixed-length’ in the sense that all extension G instructions are 32-bit. However, the Compressed extension
adds support for 16-bit instructions and has been widely implemented due to its benefits for performance and
energy efficiency [127]. The ISA is also designed to support instructions any multiple of 16-bit instruction
’parcels’ in length, including instructions longer than 192 bits! Bits in the least significant byte of an instruc-
tion identify its length; for the 16- and 32-bit instructions considered in this project, this is determined by
bits 1:0 (numbering from the least significant bit), with 11 identifying a 32-bit instruction and 00, 01, and
10 identifying a 16-bit instruction’s quadrant in the C extension. Unlike x86’s rather ambiguous instruction
format, RISC-V has only a small number of well-defined instruction formats; the 16-bit and 32-formats are
illustrated in Figure 2.6.

The ISA features 32 general-purpose integer registers and, on microarchitectures supporting the F, D or Q
floating-point extensions, a separate floating-point register file with a further 32 registers. The integer register
length XLEN is 32, 64, or 128 bits for RV32, RV64, and RV128 respectively; similarly, the floating-point register
length FLEN is 32, 64, or 128 bits depending on the highest precision floating-point extension implemented
(F, D, and Q respectively). As shown in Table 2.7, both sets of registers are addressed using the binary values
00000 to 11111 and therefore the register type is inferred based on the instruction the register is encoded
within. The instructions fmv.x.w,d,q and fmv.w,d,q.x (available on RV64 and RV128 only) enable values
to be transferred between the integer and floating-point registers. For the compressed instruction formats
which use 3-bit register encodings, only the registers s0 - a5 (integer) and fs0 - fa5 (floating point) are
available and are encoded with the values 000 to 111.
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31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12] imm[10:5] rs2 rs1 funct3 imm[4:1] imm[11] opcode B-type

imm[31:12] rd opcode U-type

imm[20] imm[10:1] imm[11] imm[19:12] rd opcode J-type

Format Meaning 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CR Register funct4 rd/rs1 rs2 op
CI Immediate funct3 imm rd/rs1 imm op

CSS Stack-relative Store funct3 imm rs2 op
CIW Wide Immediate funct3 imm rd ′ op
CL Load funct3 imm rs1 ′ imm rd ′ op
CS Store funct3 imm rs1 ′ imm rs2 ′ op
CA Arithmetic funct6 rd ′/rs1 ′ funct2 rs2 ′ op
CB Branch funct3 offset rs1 ′ offset op
CJ Jump funct3 jump target op

Figure 2.6: The RISC-V 16- and 32-bit instruction formats, reproduced from [127].

2.3.3 Microarchitectures under Test
Comprehensive discussion of each microarchitecture’s is beyond the scope of this section; for further information
regarding their pipelines, the most useful resource is [130].

Intel Bonnell. The Bonnell CPU under test is the Intel Atom N270 1.60GHz, which is an ultra-low power
single-core CPU for the 32-bit x86 ISA supporting the MMX, EMMX, and SSE through SSSE3 extensions. It
has a 16-stage pipeline which is less complex than the Haswell/Broadwell pipeline described in Section 2.2.6;
it features only two instruction decoders and two execution ports, and supports branch prediction but not
out-of-order or speculative execution [130]. It has a a 32 kB 8-way L1 instruction cache, 24 KB 6-way L1
data cache, and 512 KB 8-way L2 cache, with no L3 cache [131]. Relevant errata to the project are AAG18
concerning unsynchronized cross-modifying code, which is not a concern provided the test program is locked
to a single logical core (whilst single-core, the CPU supports multithreading so has two logical cores), and
the more troubling AAG40, which states that instruction page remapping or self-/cross-modifying code may
lead to "unpredictable system behavior" under a "complex set of internal conditions" [132]. The ambiguity
in this description unfortunately means that such conditions cannot be avoided experimentally, so although
suspicious behaviour was not observed in testing, this may have affected the results.

Intel Westmere. The Westmere CPU under test is the Intel Core i3 M330 2.13GHz, a dual-core mobile CPU
for the 64-bit x86 ISA supporting the MMX, EMMX, and SSE through SSE4.2 extensions. Multithreading
is supported, so the CPU has 4 logical cores. The pipeline appears to be at least 18 stages, based on
microbenchmarking [130], with 4 instruction decoders and a predecoder for instruction length detection,
branch prediction, out-of-order execution, and speculative execution. It has a 64KB 4-way L1 instruction
cache, 64 Kb 8-way L1 data cache, 512 KB 8-way L2 cache and 3 MB 12-way L3 cache. Westmere is a die
shrink of Nehalem, so most microarchitectural data available for Nehalem applies. Unfortunately the Westmere
platform (Dell Inspiron 1564) suffered hardware failure early in the project (believed to be unrelated to any
instruction testing!), so few results could be obtained on this microarchitecture.

Intel Broadwell. The Broadwell CPU under test is the Intel Core i7-5600U 2.6GHz. Similarly to the West-
mere CPU, it is a dual-core mobile model supporting 64-bit x86 with the MMX, EMMX, SSE through SSE4.2,
AVX2, and TSX extensions. As in Westmere, there are 4 instruction decoders and a predecoder, with a max-
imum of 16 bytes of instructions fetched per cycle and no cycle penalty for decoding multiple prefixes, and
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Name Encoding Description
zero 00000 Hard-wired zero (writes ignored)
ra 00001 Return address
sp 00010 Stack pointer
gp 00011 Global pointer
tp 00100 Thread pointer
t0 00101 Temporary/alternate link register

t1-2 00110-00111 Temporaries
s0/fp 01000 Saved register/frame pointer

s1 01001 Saved register
a0-1 01010-01011 Function arguments/return values
a2-7 01100-10001 Function arguments
s2-11 10010-11011 Saved registers
t3-6 11100-11111 Temporaries
ft0-7 00000-00111 FP temporaries
fs0-1 01000-01001 FP saved registers
fa0-1 01010-01011 FP arguments/return values
fa2-7 01100-10001 FP arguments
fs2-11 10010-11011 FP saved registers
ft8-11 11100-11111 FP temporaries

Figure 2.7: Integer and floating-point (FP) architectural registers on RISC-V, adapted from [127].

support for branch prediction, out-of-order and speculative execution; at a high level, the microarchitecture is
identical to Haswell, as described in Section 2.2.6. Relevant errata to the project are that numerous hardware
performance counters have accuracy issues (these were avoided where possible, although unfortunately the
INST_RETIRED.ALL counter crucial to Section 4.4.2 is affected by errata BDD11 and BDD53, so the number
of instructions retired may be inconsistently over- or under-counted); several instructions are noted to produce
the wrong exception with certain instruction encodings (errata BDD14, BDD23, BDD39, BDD74) and there
are multiple possible HCF instruction conditions (BDD5, BDD86, and BDD100), although none of these were
encountered in testing; and finally Intel TSX may "behave unpredictably...under a complex set of internal
timing conditions and system events" (BDD99) [87]. It is important to note that whilst there are indeed
many errata affecting this microarchitecture (119, including some fixed errata), it is by no means a particularly
flawed microarchitecture which should have therefore been avoided; rather, the number of errata is indicative
of the many verification and manufacturing challenges involved in producing a CPU. This highlights both
the necessity of CPU auditing tools and also their limitations; runtime instruction testing is highly valuable,
but accuracy cannot be guaranteed when the mechanisms available for measuring instruction behaviour are
inherently flawed.

SiFive Freedom U540. The SiFive HiFive Unleashed board’s U540 is the first commercially available Linux-
capable multi-core RISC-V SoC, featuring one E51 monitor core and four U54 application cores. The E51
supports RV64IMAC and the machine and user modes with a 16KB 2-way L1 instruction cache and 8KB data
tightly integrated memory (DTIM). The U54 cores support RV64GC, machine, supervisor and user modes, and
have separate 32KB 8-way L1 instruction and data caches. Writes to instruction memory must be synchronised
with the fence.i instruction. Both cores have single-issue, in-order 5-stage pipelines with branch prediction.
Relevant errata include that the high 24-bits of virtual and physical addresses are ’sometimes’ unchecked
(ROCK-2) and that atomic operations are not ordered correctly on the E51 (ROCK-3) [117].

SiFive E31. The HiFive1 microcontroller features the SiFive E31 CPU as part of the Freedom E310 SoC,
which has a a single-issue, in-order 5-stage pipeline supporting RV32I machine mode and the M, A, and C
extensions. It features branch prediction, a 16KB DTIM and a 6 KB 2-way set-associative instruction cache;
writes to instruction memory must be synchronised with the fence.i instruction [133].

26



Chapter 3

Implementation and Results: RISC-V

"Expected results: Squid is restarted.
Actual results: All files are deleted on the
machine."

Swapna Krishnan [134]

This project’s contributions on RISC-V are as follows:

• The first known investigation of undocumented instructions on RISC-V, using the SiFive HiFive Un-
leashed and HiFive1 platforms.

• Identification of 2048 undocumented instructions on the HiFive Unleashed, at least 608 of which modify
architectural state, and partial reverse-engineering of their instruction format and functionality.

• A method for reducing the size of the meaningful instruction search space by 94%.

• Identification of bugs in a popular RISC-V disassembler.

• A preliminary method for inferring instruction functionality from register state changes.

• Debugging of the HiFive Unleashed bootloader to resolve a failure to boot with the Debian demo image,
which resulted in a small patch to the SiFive Freedom Unleashed Software Development Kit [135].

• A version 2 release of the OpcodeTester tool compatible with both RISC-V Linux and SiFive Freedom
Metal incorporating the above contributions, released as open-source on GitHub [2].

3.1 Initial Framework
OpcodeTester currently only supports GNU Linux environments (and Freedom Metal for the HiFive1). How-
ever, with slight modification the code should be portable to other POSIX operating systems, and with more
substantial modification even to Windows. Windows’ implementation of exception handling is quite different,
but the broader concepts such as making a memory page executable and registering an exception handler
remain the same.

As described in [2], in my prior research project I developed an initial testing framework for integrating execu-
tion of arbitrary machine code into a larger test program in C. Undocumented instructions have no assembly
mnemonics, so this cannot be achieved with inline assembly code (arbitrary bytes can be inserted with .byte,
but this does not support variable byte values). Instead, custom machine code can be run by creating an
array of unsigned characters (the test array) either as a global variable or allocated on the heap, making
the page containing the array executable (with mprotect), and then creating and calling a function pointer
to the array. Additionally, a mechanism is needed for restoring control flow after each instruction test. For
instructions which run without faulting, this is as simple as placing the relevant byte(s) for a ret instruction,
82 80 on RISC-V and 90 on x86, after the test instruction bytes (although see Section 4.3.1 for concerns
regarding using this on x86!).
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To manage instructions which fault, the test program must register a signal handler for the POSIX signals
SIG_ILL, SIG_SEGV, SIG_TRAP, SIG_BUS and SIG_FPE 1, and modify the instruction pointer (IP) in this signal
handler so that the program can continue after the faulting instruction. With the exception of SIG_TRAP,
the corresponding exception for each of the caught signals returns the address of the faulting instruction as
the IP to return to, so the program will loop repeating the same instruction over and over again unless the
IP is modified in the signal handler. In my prior project, I used Sandsifter’s method of modifying the IP
within the mcontext struct to point to a global assembly label positioned after the instruction call. Executing
arbitrary machine code in a kernel driver can be similarly constructed with equivalent kernel functions; however,
exception handling is far more challenging, which is discussed further in [2].

3.2 Porting OpcodeTester to RISC-V
3.2.1 HiFive Unleashed
A minimal framework to test arbitrary machine code on the HiFive Unleashed is provided in Listing 3.1; the
actual test framework incorporates more safeguards, such as a separate stack for the signal handler.

I began porting the tool to RISC-V to run in the HiFive Unleashed’s default buildroot OS. mcontext is not
fully implemented in the default version of glibc so cannot be used to modify the IP in the signal handler.
I replaced this mechanism with sigsetjmp and siglongjmp. These functions implement a non-local goto,
additionally restoring the execution context and signal mask. sigsetjmp returns with a different value when
it is called after siglongjmp has restored the context, enabling the faulting instruction to be skipped. The
definition of ’execution context’ varies by C standard library implementation and is architecture-specific, but
typically entails unwinding the stack and restoring a limited set of registers. The values of non-volatile local
variables are undefined after the context is restored, so contrary to standard practice most variables in Op-
codeTester are global. (However, the .data segment may still occasionally be corrupted by undocumented
instructions.) To further guard against this corruption I provided the signal handler with a separate stack.

Despite the sigsetjmp mechanism, testing was frequently interrupted by program hangs which required a
manual restart of testing: many of the tested instructions failed to return correctly. After several unsuccessful
attempts to prevent these failures, I accepted that some instructions will always corrupt control flow and
amended the test program to fork a separate child process for each instruction. Note that it is crucial to
manually set the behaviour of SIGCHLD to SIG_IGN in the parent process to avoid hitting the forked processes
limit; without this, the child processes live on as zombies in the process table [136]. As this prevents corruption
of the parent process’ memory or control flow, stability is significantly improved, although program hangs can
still occur if the parent becomes stuck waiting for the child process’ exit signal. It is crucial for the parent to
wait before forking the next test process, as otherwise results are output in the wrong order; the parent will
typically receive an exit signal if the child process exits normally or is killed by the operating system due to
repeated exceptions. However, certain control flow corruption (i.e. producing an infinite loop) will cause the
child process to never exit, making the parent process hang. I experimented with manually killing each child
process from the parent process but found this did not prevent the issue.

3.2.2 HiFive1
The minimal framework for testing arbitrary machine code on the HiFive 1 is provided in Listing 3.2.

The HiFive1 supports machine mode only. Whilst operating systems such as FreeRTOS and Zephyr have
been ported to the board, I chose to target SiFive’s Freedom Metal framework, as it promises to enable code
portability across all future SiFive microcontrollers. As the framework is very new and still under development
this was somewhat risky, but I felt it was justified by the resulting enhanced portability. The framework
provides a bare-metal C environment and API for accessing CPU features.The CPU’s volatile memory is
executable by default, so no alteration of memory protection is necessary [133]. POSIX signals are unsup-
ported, but the CPU API enables exception handlers to be registered for exceptions 0-11 (8-10 are reserved
with no documented functionality; 12-31 are also reserved, but attempting to register a handler for them

1This is not the complete set of POSIX signals, but across millions of tested instructions I have not yet witnessed any other
signal.
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returns an error). longjmp must be used to return from a fault rather than the method provided in the doc-
umentation using API calls metal_cpu_get_exception_pc, metal_cpu_get_instruction_length, and
metal_cpu_set_exception_pc, as this method sometimes causes an infinite loop within the Freedom Metal
exception handling code. I attempted to debug this without success, as debugging the HiFive1 with gdb
via OpenOCD is extremely buggy with frequent crashes (particularly errors concerning invalid register cache
entries). On a fully variable-length architecture I would assume that the culprit was an incorrect instruction
length being returned, but given the predictability of RISC-V’s instruction length encoding (determined by
bits 1:0) this seems improbable. There is no support for processes, so it is not possible to fork and test each
instruction in a separate process, which increases the frequency of program hangs. Use of fflush(stdout)
seems to produce erratic behaviour, with frequent program hangs; fortunately this is unnecessary on the Hi-
Five1 due to the lack of child processes (on the Unleashed it needs to be flushed to ensure output ordering
and prevent the children inheriting the contents of the parent’s buffer).

3.3 Inferring Instruction Functionality
Register state. I implemented a comparison of register state before and after instruction execution to
determine if undocumented instructions which successfully execute might be register operations, recording
the state of all integer and floating-point registers in addition to the floating-point control registers fcsr,
frm, and fflags. ra and a5 are always modified, so the tool ignores these (the compiler uses a5 to store
the pointer to the instruction array, and to index the arrays used to store the register state; with a different
toolchain this might be altered). The values of the floating-point control registers cannot be read directly and
must be copied into other registers, so t3-5 are used for this, with their ’before’ values recorded afterward
and their ’after’ values recorded before the floating-point control registers are read again. Motivated by the
observed effects of the RES1 and RES2 undocumented instructions (see Section 3.7), I then attempted to
automate identification of some arithmetic instructions by comparing register state over multiple tests of each
instruction. However, I found this was of limited utility and ultimately identified most instruction functionality
manually.

Performance counters. On x86, the hardware performance counters provide extremely valuable fine-grained
insight into the microarchitectural effects of instructions, and can be used to be infer instruction functionality
(for example, cache hits or misses demonstrate that the instruction is attempting a load). I attempted to
implement performance counter monitoring on the HiFive Unleashed but unfortunately found that the counters
are too unreliable to provide any useful insight into instruction functionality. The store counter, for example,
always reads the same value irrespective of how many store instructions have been executed. In debugging
this issue I confirmed that the compiler orders the assembly instructions correctly and does not mistakenly
overwrite the registers containing the counter values before they are printed to the console; the behaviour
persists even with serializing instructions placed either side of the executing instruction(s) and with a long
delay to allow the counter to update. In fact, the counter value remains unchanged between program runs
until the system is rebooted, suggesting the counter is completely inoperative and is randomly initialized at
boot time. Beyond their inaccurate values, a further challenge is that hardware performance counters can only
be configured in machine mode, rather than in supervisor mode as on x86. This means that the bootloader
must be amended with code to initialize the programmable counters counter3 and counter4 (just two events
can be configured at a time) and reflashed to the board’s SD card in order to monitor different counters - a
significant bottleneck compared to the multiple counter changes per second achievable on x86! A solution to
this would be to implement a machine mode driver (akin to an x86 SMM driver) to run continuously alongside
the operating system and provide an interface for modifying counters at runtime; unfortunately I was unable to
implement this within the time constraints of the project. The HiFive1 does not implement any performance
monitoring counters (beyond a real-time clock).

3.4 Challenges
Disassembler bugs and variable-length instructions. During the course of testing I discovered that many
of the instructions identified by the disassembler as illegal were false positives. [4] does not recognise any of
the compressed microarchitectural hint instructions as valid; possibly it was produced using an older version
of the RISC-V specification before these were defined. Removing these false positives from the results was
straightforward; more challenging however was tackling these false positives when testing ’32-bit’ instructions
actually interpreted as two 16-bit instructions. Initially, I determined if an instruction was documented by
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disassembling the entire 32 bits. However, if the disassembler detects a 16-bit instruction in the two least
significant bytes, it will disassemble this instruction only and ignore the other two bytes. To add to the confu-
sion, the disassembler ’lifts’ the compressed instructions into their equivalent 32-bit mnemonics (a somewhat
bizarre design choice), so it was not initially apparent that this was occurring. This challenge posed a major
bottleneck for my investigation of RISC-V: I initially believed that the memory corruption and program hangs
caused by execution of a valid 16-bit instruction (e.g. c.addi4spn) and a false positive ’illegal’ 16-bit instruc-
tion actually indicated undocumented 32-bit instructions, and spent significant time (> 1 week) identifying
and blacklisting these instructions in an attempt to complete a full exhaustive search of the instruction space.

I found that for all instructions interpreted as 16-bit by the disassembler (bits 1:0 != 11) it is necessary
to disassemble the upper two bytes and lower two bytes separately and - in addition to skipping instructions
where both sections are valid 16-bit instructions - to employ two heuristics: all instructions with a valid lower
two bytes are skipped, and all instructions with an invalid lower two bytes but a valid c.addi4spn instruction
in the upper bytes are also skipped. This does mean that some entirely invalid instructions are skipped in
testing, but entirely mitigates the many program hangs and crashes I observed due to valid 16-bit instructions
executing and corrupting program state. Ultimately, these issues could be resolved by implementing the mi-
croarchitectural hint instructions in the disassembler, but due to time constraints I was unable to complete
this. Another potential solution would be to add a full function prologue and epilogue to the test bytes (to
set up / tear down a stack and restore clobbered registers); I did not implement this as in the vast majority of
cases it is unnecessary and adds significant overhead to performance monitoring values (assuming on future
microarchitectures the performance counters are usable).

Beyond the disassembler’s false positives, the fundamental challenge is that having any kind of variability
in instruction length complicates instruction interpretation; the extreme 1 to 15 byte variability of x86 is
by no means necessary to produce this. Variable-length instruction encoding is therefore a security concern
as it renders all tasks involving instruction interpretation significantly more challenging, including not only
instruction testing but also tasks such as producing emulators and virtualisation software or reverse-engineering
obfuscated malware.

Self- and cross-modifying code. When using self-modifying code as in the case of the test array, it is
important to ensure that the changes are visible to the CPU before the code is executed. The RISC-V memory
model provides no guarantee that stores will be visible to instruction fetches on the same hart (hardware
thread) unless a fence.i instruction is executed after the store to serialize the instruction and data streams
[127]. I initially overlooked the necessity of including this, which produced erroneous results as the instruction
under test was often an instruction prior to the instruction I believed I was testing. Additionally, a fence
instruction must be executed to prevent cross-modifying code if the process is rescheduled onto a different hart
which has not yet observed the changes made on the previous hart. Unfortunately the RISC-V specification
permits both fence and fence.i to be implemented as a nop to reduce hardware complexity [127], so there is
no guarantee a RISC-V microarchitecture will provide a means of serializing the instruction and data streams.
Due to the visible behaviour change this is clearly not the case for fence.i on the HiFive Unleashed. However,
as I was unsure of the exact implementation of fence and observed no behaviour change when using it, I
opted to additionally lock the test program to a single hart using a call to sched_setaffinity to ensure
no cross-modification could occur; child processes inherit the processor affinity of their parents, so each child
process will also test its instruction on the same hart.

Of the two mechanisms, fence.i appears to be most crucial; it is important to be aware that the tool may
produce erroneous results on other microarchitectures which implement the instruction as a nop or provide
only weak serialization guarantees, and indeed this appears to be the case on the HiFive1. The manual
states that "the instruction cache is not kept coherent with the rest of the platform memory system" and that
fence.i should be used when modifying instruction memory, which suggests that it is implemented. However,
despite using fence.i I repeatedly observed documented instructions executing; these are skipped in the test
program and should never execute unless the instruction cache fails to remain in sync with writes to the test
array, so this behaviour suggests that the HiFive1’s serialization is too weak to reliably support self-modifying
code. Surprisingly, whilst there is some variance in the documented instructions which trigger this across runs,
the behaviour typically occur in the same encoding regions (in particular the region 0100111000100000 to
0101111111111111) rather than occurring randomly. This still occurs even with precautions to slow down
execution such as adding long sections of unrelated code to modify the instruction cache and repeatedly
inserting fence.i and fence instructions (which clearly do have some effect on the pipeline, as excessive
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usage severely slows execution).

Brute-force search. RISC-V’s instruction space is theoretically small enough to be searched exhaustively:
there are 4,294,967,296 possible 32-bit encodings, 3,464,099,880 of which the RISC-V disassembler produced
by Clark [4] recognises as valid, leaving 830,867,416 to test. Using the disassembler to skip all documented
RISC-V instructions, assuming a perfect hardware implementation and a fully correct disassembler then every
instruction tested should fault with a single illegal instruction exception, with no change to architectural
state and therefore no crashes or memory corruption. However, in practice such a search is infeasibly slow,
particularly on the HiFive1. After multiple days attempting an exhaustive search on the HiFive Unleashed
(with frequent intervention required to transfer log files and restart the program after crashes) I abandoned
the attempt. The time invested was preventing progress in other areas of the project, and all results featured
either false positives (the microarchitectural hints) or two specific encodings, which I subsequently investigated
further (see Section 3.7). One interesting outcome of the search, however, was identifying that the speed of
the HiFive Unleashed’s heartbeat LED varies. I initially thought this was linked with CPU or disk activity (and
therefore could act as a side channel), but an increase in blink speed seems to be permanent (until the system
is rebooted) after repeated undocumented instruction testing; this does not appear to be linked to execution
of a specific instruction and does not occur in normal usage of the system.

Logging output on the HiFive1. Using the HiFive1 in machine mode with the Freedom Metal framework
there is no support for file creation, so the only logging method is to output results with printf and view
these on another computer via the UART console. However, there is a limit to how many lines can be buffered
with this method, and attempting to simultaneously write the output to a file on the host computer (such as
with screen -L) produce garbled output. This limits the extent to which testing can be automated as the
output must be repeatedly copied to a file manually before it is lost. Printing no output for instructions which
correctly fault with an illegal instruction exception helps reduce the quantity of output but does not resolve
the problem entirely.

Kernel output. The HiFive Unleashed runs the buildroot Linux kernel in debug mode, so all printk messages
logged by the kernel appear immediately on the console. However, this output is only visible when connected
via USB and not when connected via ssh; as such these silent errors can easily go undetected when using
ssh, leading to the incorrect assumption that an instruction does nothing when in fact it causes an unhandled
exception or even a kernel oops.

Testing on Debian. I attempted to set up the Debian demo image provided by SiFive so that I could compare
the results of instruction testing in a full Linux environment compared to the minimal environment provided
by buildroot; I was concerned there might be differences in exception handling. This required debugging of
the bootloader which resulted in a patch to the Freedom Unleashed Software Development Kit [135], as the
prior boot configuration led to a kernel panic on boot. Preliminary testing on Debian appeared to replicate
the results on buildroot. Unfortunately, I was unable to obtain full results after an update prevented the ssh
server from starting; this meant I could no longer transfer files.

Undefined behaviour. Finally, it is important to note that several of the practices used in the test frame-
work, such as continuing execution after handling a segmentation fault and using asynchronous functions
after calling siglongjmp, technically produce undefined behaviour according to the C specification [137].
I am not aware of any alternatives to these mechanisms which avoid this; when the entire premise of the
tool is to break the architectural ’rules’, some use of undefined behaviour appears to be inevitable. These
techniques compile and execute correctly with GCC version riscv64-linux-gcc.br_real (Buildroot
2019.02-07449-g4eddd28f99) 8.3.0 and functioned correctly on both the HiFive Unleashed (with build-
root and the Debian demo image) and the HiFive1. However, it is possible that this may not be the case
with a different toolchain; as the behaviour is undefined, future compilers have no obligation to produce the
same behaviour. Similarly, with a different Linux kernel or Freedom Metal version the tool may not function
correctly if exception handling or sigsetjmp were to be substantially modified.

3.5 Reducing the Instruction Search Space
As an exhaustive search proved infeasibly slow I identified a ’functional pattern’ for RISC-V 32-bit instructions,
FUNCT, as shown in Figure 3.1, based on the instruction fields documented to alter instruction functionality
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31 30 25 24 21 20 19 15 14 12 11 8 7 6 0
funct7 funct3 opcode FUNCT

Figure 3.1: The functional pattern for 32-bit instructions.

Platform Test Run Seg. Illegal No Ret
Unleashed RES1/2 16-bit 1024 896 0 128

All 16-bit (excl. RES1/2) 56 0 8231 0
Functional 32-bit 3297 1 16170 0

HiFive1 RES1/2 16-bit 728 1300 20 0
All 16-bit (excl. RES1/2) 32 0 8255 0

Table 3.1: Experimental results on the HiFive Unleashed and HiFive1.

[127]. The pattern covers bits 31-25 (for funct7), 15-12 (for funct3), and 6-0 (for the opcode field); theo-
retically this is sufficient to cover all implemented instruction behaviour, with the other bit fields modifying
operands without significantly altering functionality. In this interpretation, a mv instruction is still a mv re-
gardless of its source and destination operands; however, as discussed earlier there are varying definitions of
what constitutes an instruction variant (see Section 2.3), and this does make the assumption that no undocu-
mented instructions are defined by a specific pattern of operand bits (which might occur if an undocumented
instruction were deliberately implemented and hidden in the design).

Testing the FUNCT pattern reduces the search space to 262,144 instructions (a reduction of 94%) and
the test space to just 75,823 instructions the diassembler considers illegal. By keeping all other bits set to
0, crashes and memory corruption are significantly reduced as operand values of 0 will typically either leave
architectural state unaltered (such as adding 0 or writing to the zero register) or cause a segmentation fault
(rather than modifying memory within the test program’s address space).

3.6 Results
Many of the undocumented instructions found on the HiFive Unleashed were false positives (microarchitec-
tural hints). However, 2048 were indeed undocumented instructions of the form 100xxxxxxxxxxx00. This
is an encoding from quadrant 0 of the Compressed RISC-V extension which is reserved for future standard
extensions [127]. It should therefore fault on current microarchitectures with an illegal instruction exception,
and should never be used for implementing custom instructions. However, as shown in Table 3.1 1024 of
the instructions execute, 896 cause a segmentation fault, and 128 seemingly cause memory or control flow
corruption, as the child process is killed before it can output results. Similarly, the undocumented RES1/2
also execute on the HiFive1, although with markedly different exception behaviour, and were the only undocu-
mented instructions found; the 32 non-RES1/2 instructions which run in the all 16-bit encodings test are again
false positives due to the disassembler. These RES1/RES2 instructions are discussed further in the next section.

Due to the erratic behaviour of the HiFive1 I was unfortunately unable to obtain meaningful results from
the 32-bit functional pattern search; control flow was repeatedly corrupted, seemingly defying any attempts at
blacklisting individual instructions or binary patterns. These problems also occur to a lesser extent on the other
tests; testing the RES1/2 encodings shows erratic exception behaviour for 6 instructions, but no corruption
of control flow, whilst testing the 16-bit space required substantial manual intervention and blacklisting of
specific documented instructions due to its weak serialization of the instruction and data streams.

3.7 Reverse-Engineering RES1 and RES2
SiFive do not have a responsible disclosure process or designated security contact; I disclosed my findings via
email on 22nd April 2019 but have received no response. The HiFive Unleashed is a development board rather
than a consumer desktop platform and is not in widespread use, and I have not yet identified any way in which
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
100x rd [4:3] funct/rs1 rd[2] unused 00 RES1

Figure 3.2: RES1, the main reverse-engineered undocumented instruction format; RES2 features value 111 in
the funct/rs1 field and appears to also use (but not consume) the data in the 16 bits following the instruction.

Funct/rs1 Effect
000 Load 139264 into rd
001 Segmentation fault
010 Load 0 into rd
011 Segmentation fault
100 Segmentation fault
101 Load 0 into rd
110 Load 0 into rd
111 Load 32-bit immediate (RES2)

Table 3.2: The funct/rs1 encodings.

these instructions could be used to construct an exploit, so I believe that publishing these results does not
violate my project commitment to responsible disclosure.

The RES1 instruction format is highly counter-intuitive and required substantial effort to determine. I be-
gan by trying to match the results to any of the documented 16-bit formats, but none of these were matched
by the binary patterns. For example, the patterns 1001111110xxxx00 and 1001111111xxxx00 appear to encode
the same source but different destination registers (s8 and t3 respectively; they both appear to be loaded with
the value 18446744071570628480+4z, with the z multiplier encoded by the 4-bit offset field xxxx; however,
as described below the value loaded is actually encoded by the RES2 format). These patterns only differ in bit
6 (counting, as in the RISC-V specification, from right to left starting with bit 0) and therefore this bit must
be part of the destination register field rd, but no documented instruction format in the Compressed exten-
sion features this. Other encodings demonstrate the same, with the only reliable register encoding patterns
occurring split across the rd[4:3] and rd[2] fields. All register encodings require an extension of 00 in bits 1:0
to match the binary encodings specified in Figure 2.7; this is further supported by the fact that no register
with bits 1:0 != 00 is ever visibly modified by these instructions (registers zero, tp, s0, s4, s8, a2, a6 and
t3 are modified). Whilst it is an extremely surprising result, these instructions do appear to use an entirely
new instruction format. Encodings 1000 and 1001 for bits 15:12 appear to have identical functionality.

The next stage of analysis was determining that there are two distinct instruction formats: a 16-bit for-
mat (RES1) for funct/rs1 values 000 - 110, and a 32-bit format (RES2) for funct/rs1 value 111, which is
identical to RES2 but appears to use the next 16 bits together with its own entire 16-bit value as a 32-
bit immediate. RES2 in particular appears a highly implausible format, but is so far the only format which
matches the observed architectural state changes. I determined the format by modifying the epilogue bytes
of my test function. By default the instruction is immediately followed by the bytes 0x82 0x80 for ret to
return from the function; noticing that the value moved to each register by RES2 instructions appeared to
be the instruction and 0x82 0x80 together read as a 32-bit value, I confirmed this by inserting other 16-bit
values before the ret bytes such as 0x00 0x01 (nop) and found the RES2 values changed correspondingly,
with RES1 instructions unaffected. However, surprisingly the decoder still appears to treat RES2 as a 16-bit
instruction: if the following 16-bit value is a faulting compressed instruction (such as the defined illegal value
0x00 0x00) the RES2 instructions execute before faulting with an illegal instruction exception on this next
16-bit instruction (except RES2 instructions which are known to fault or not return; the consistent behaviour
of these demonstrates that the RES2 instructions do indeed execute).

I have not yet managed to determine how the source registers/addresses are encoded due to the lim-
ited data available. As the performance counters are unreliable, monitoring register state changes is un-
fortunately the only method available for obtaining data about the instruction’s functionality. Only the
values loaded by the RES2 instructions ever vary (when the 16 bits following the instruction are modi-
fied) and the segmentation faults and 0 values are uninformative, as a variety of sources could produce
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these. I also cannot locate the source of the value 139264 (it is not present in any of the registers,
for example). As would be expected, modifying the thread pointer tp is typically catastrophic for the
child test process, and in particular the tp encodings 1000000101xxxx000 and 1001000101xxxx00 for
xxxx from 0000-1001 trigger kernel oops ("unhandled signal 11 code 0x1 at 0xfffffffffffff8f0 in
ld-2.28.so[2000000000+1c000]") which demonstrate that for at least the 101 funct/rs1 value bits 5:2 are
relevant to instruction functionality. However, as the address of the segmentation fault does not vary, it is
unclear what exactly they encode.

The only HiFive Unleashed erratum which might be potentially relevant to this behaviour is ROCK-2: "the
high 24-bits of virtual and physical addresses are sometimes unchecked" [117]. However, this seems an unlikely
explanation for the instruction behaviour of RES1 and RES2, because both appear to be interpreted as 16-bit
instructions, so surely could not encode a long enough address to be affected (with the possible exception of
the RES2 format). I have also confirmed experimentally that the instruction bytes are ordered correctly in
memory (i.e. these results are not erroneously due to confusion between little-endian and big-endian ordering
or other endianness variants).

The question remains: why do these bizarre instructions exist? The distinct formats suggest the instructions
may have been deliberately encoded, as two entirely distinct instruction formats are likely to both require
dedicated decoding logic. They may perhaps be debug instructions which are either intended for internal
SiFive use only, or were found to be unreliable after fabrication and left on the die but not documented. The
only documented debug interface requires JTAG input and so should not create any undocumented instructions
in regular instruction decoding. It seems unlikely that such a large number of undocumented instructions could
have been missed in verification unless the absence of undocumented instructions was not verified whatsoever,
which would be a surprising oversight. I have found no trace of the RES1 or RES2 encodings in publicly-
available RISC-V verification frameworks such as riscv-formal; however, the author of this framework does
note that some early RISC-V cores implemented reserved opcodes incorrectly [138].
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# define _GNU_SOURCE
/* Note: include stdio.h, stdlib .h, setjmp .h, signal .h,
sys/mman.h, unistd .h, string .h, sys/wait.h, inttypes .h, sched.h */

unsigned char execInstruction [6];
volatile sig_atomic_t lastSig = 0;
sigjmp_buf buf;
struct sigaction handler ;

void signalHandler (int sig , siginfo_t * siginfo , void* context ){
lastSig = sig;
siglongjmp (buf , 1);

}

int main (){
cpu_set_t mask;
CPU_ZERO (& mask );
CPU_SET (0, &mask );
sched_setaffinity (0, sizeof ( cpu_set_t ), &mask );

memset (& handler , 0, sizeof ( handler ));
handler . sa_flags = SA_SIGINFO ;
handler . sa_sigaction = signalHandler ;
sigaction (SIGILL , &handler , NULL ); sigaction (SIGFPE , &handler , NULL );
sigaction (SIGSEGV , &handler , NULL ); sigaction (SIGBUS , &handler , NULL );
sigaction (SIGTRAP , &handler , NULL ); signal (SIGCHLD , SIG_IGN );

size_t pagesize = sysconf ( _SC_PAGESIZE );
uintptr_t pagestart = (( uintptr_t ) & execInstruction ) & -pagesize ;
mprotect (( void *) pagestart , pagesize , PROT_READ | PROT_WRITE | PROT_EXEC );

// set instruction bytes in execInstruction [0:3] , LSB first
execInstruction [4] = 0x82; execInstruction [5] = 0x80; //C.ret
asm volatile ("fence; fence.i");

// forking only necessary for stability if testing multiple instructions
pid_t pid = fork ();
if(pid == 0) { //we are the child process

if (! sigsetjmp (buf , 1)){
lastSig = 0;
(( void (*)()) execInstruction )();
printf (" Instruction ran\n");

}
else if( lastSig == 4) printf (" Illegal opcode \n");
else printf (" Exception %d\n", lastSig );
fflush ( stdout );
exit (0);

}
else waitpid (pid , NULL , 0); // parent waits for child
return 0;

}

Listing 3.1: Testing instructions on the HiFive Unleashed in Linux.
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# include <stdio.h>
# include <metal/cpu.h>
# include <setjmp .h>

unsigned char execInstruction [6];
volatile int lastSig = 0;
jmp_buf buf;

void exception_handler ( struct metal_cpu *cpu , int ecode) {
lastSig = ecode;
longjmp (buf , 1);

}

int main (){
struct metal_cpu *cpu0 = metal_cpu_get (0);
struct metal_interrupt * cpu_int = metal_cpu_interrupt_controller (cpu0 );
metal_interrupt_init ( cpu_int );
for(int i=0; i <12; i++){

metal_cpu_exception_register (cpu0 , 0, exception_handler );
}

// set instruction bytes in execInstruction [0:3] , LSB first
execInstruction [4] = 0x82; execInstruction [5] = 0x80; //C.ret
asm volatile ("fence; fence.i");

if (! setjmp (buf )){
lastSig = 0;
(( void (*)()) execInstruction )();
printf (" Instruction ran\n");

}
else if( lastSig == 2) printf (" Illegal opcode \n");
else printf (" Exception %d\n", lastSig );
return 0;

}

Listing 3.2: Testing instructions on the HiFive1 with the Freedom Metal framework.
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Chapter 4

Implementation and Results: x86

"ECCASLURV - Elect CPU Core As
Supreme Leader Using Runoff Voting"

@x86instructions, Twitter

This project’s contributions on x86 are as follows:

• Significantly improved stability of the established instruction testing technique in OpcodeTester, and
implementation of directed and random search.

• A novel instruction search approach conducting a timing attack on the three-byte opcode space.

• Investigation of the instruction decoder: a mapping of the instruction space using decoded lengths, and
identification of suspicious #UD decoding behaviour as a CPU bug now resolved in microcode.

• Two novel instruction testing techniques (using TSX RTM and the specpoline construct) which suppress
exception generation for significantly improved stability and performance (RTM is 95.8% faster than the
established instruction testing technique).

• An experimental investigation of transient execution of #UD-faulting instructions, with results sup-
porting the observation of [1] and establishing that #UD-faulting speculative instructions demonstrate
uniform behaviour from the instruction decoders onwards.

• A version 2 release of the OpcodeTester tool incorporating the above contributions; a fork of the
Sandsifter tool using the Intel XED disassembler to resolve its most significant flaw of false positives;
and a fork of the NanoBench microbenchmarking tool enabling testing of arbitrary machine code and
exception handling. All tools have been released as open-source on GitHub [2] [139] [140].

4.1 Undocumented Prefetches
As a baseline, I began by testing all the x86 microarchitectures under test with my OpcodeTester tool from
my previous research project (previously only the Broadwell microarchitecture had been tested). This version
1 release of the tool uses Sandsifter to search the instruction space with the tunnelling algorithm, filters
the results found through the Intel XED disassembler and re-tests the instructions with support for further
analysis and testing in kernel mode. Table 4.1 illustrates the extent of false positives identified by Sandsifter
(due to its use of the Capstone disassembler, which has incomprehensive coverage of the ISA); instructions
were tested only in user mode as I previously found in [2] that kernel mode testing is not worthwhile (it
significantly increases the risk of crashes without noticeably altering the results). The runtimes provided
are for the Sandsifter search only, as this is the major factor in the test’s speed (OpcodeTester’s analysis
runs in around a minute, depending on the number of instructions in the Sandsifter logfile). The unknown
and approximate values on Bonnell are due to the frequency of program crashes when running Sandsifter scans.

The lengthy test times and high number of false positives in these tests prompted me to port Sandsifter
to use XED directly in the hope that this would accelerate testing. I did not integrate XED with Sandsifter’s
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Microarch Search Runtime (hours) Tested Valid Unsupported Fully Undoc
Broadwell Tunnel 06:17:27 826627376 1851679 306576 0
Westmere Tunnel 10:16:32 248430338 540076 89418 0
Bonnell Tunnel approx. 17:00:00 >179635398 6361631 119325 0
Bonnell Random approx. 08:00:00 unknown 1203382 507 0

Table 4.1: Baseline results with OpcodeTester v1 on the three x86 microarchitectures. Instructions which
executed without faulting are identified as valid (Sandsifter false positives), documented but supposedly un-
supported on the given microarchitecture, or fully undocumented.

Python command-line interface, as XED provides only a C API and I was reluctant to introduce a dependency
on the unmaintained pyxed bindings. However, Sandsifter can still be used effectively without this interface
(using the injector directly). This port has been published on GitHub as a fork of the main Sandsifter repository
[139].

The tunnelling algorithm (and the three random fuzzing tests conducted on Bonnell) found no instructions
which are entirely undocumented in the x86 ISA, but did find many prefetchwt1 instructions (in fact, all
of the ’unsupported’ instructions identified are prefetches). These had previously been identified in my prior
research project [2] and in the Sandsifter project [5]. However, I decided to investigate them more thoroughly
as a potential source of side-channel vulnerabilities. prefetchwt1 (0f 0d /2) is the "prefetch vector data
into caches with intent to write and T1 hint" instruction. It may prefetch data from the location specified in
the operand into the second level cache and put it into the ’Exclusive’ state. There is no guarantee that it
will; "no data movement occurs" if the data is already present in this state in the cache, and prefetches can be
"overloaded or ignored by a processor implementation." prefetchwt1 is supposedly supported only on Intel
Xeon Phi CPUs, and both cpuid and XED agree it is unsupported on the microarchitectures under test (cpuid
leaf 7, ECX bit 0 [91, Vol. 2A]). XED’s datafiles indicate it as available on the Kaby Lake microarchitecture
only [3]. However, the uops.info dataset notes Intel IACA performance values for the instruction on Nehalem,
Westmere, Sandy Bridge, Ivy Bridge, and Haswell (1 µop on port 2 or 3 for Haswell) [141]. So it appears to
be a ’documented undocumented instruction’: supposedly unsupported on the microarchitectures under test,
with the reality known to some Intel teams (IACA) and not others (XED). A potential source of the confusion
is AMD’s implementation of the prefetch instructions. They define 0f 0d /0 and 0f 0d /1 only, but note
that other destination register values in the ModRM byte will not cause an #UD exception and are defined as
aliases to 0f 0d /0 [125], so perhaps Intel has also implemented these aliases for compatibility purposes (and
failed to document them). But if prefetchwt1 has no effect on architectural state, then does it matter that
it is undocumented on the microarchitectures under test? Of course! An undocumented instruction which
operates on the cache state is an undocumented side channel. [99] showed that other prefetch instructions
(prefetchnta and prefetcht2) could be exploited in side-channel attacks to defeat the supervisor mode
access prevention (SMAP) and address-space layout randomisation (ASLR) security mechanisms, and they
can also be used in cache timing attacks against user-level processes.

Investigating the x86 prefetch instructions highlights the unreliability of x86 documentation. For example,
Intel’s instruction set reference says that the T2 temporal parameter on a prefetch instruction specifies that
data will be prefetched into the last level cache or "an implementation-specific choice" and that the amount of
data prefetched is implementation-dependent but "a minimum of 32 bytes" [91], whereas Intel’s optimisation
manual declares that there is "no implementation difference between PrefetchT1/T2 on any microarchitec-
ture"1 and that prefetches "always fetch 64 bytes of data" [123]. It is unclear why these ambiguities persist
in the ISA when Intel are clearly aware that their claims that the behavour is implementation-dependent are
incorrect. These distinctions matter when implementing or defending against cache attacks: the amount of
data fetched is relevant given that the attack aims to determine whether the victim process has accessed
a given address or not, and the last level cache is shared across all cores whereas the second level cache is
per-core, so an attacking process using the second-level cache must be on the same core as the victim process.
Despite these differences however, cache attacks have been successfully conducted at all cache levels [118],
and therefore any undocumented instruction operating on the cache is a potential vulnerability.

I adapted the NanoBench microbenchmarking tool to determine whether the undocumented encodings
1The T1 and T2 temporal distinctions are redundant, with both filling L2 and LLC but not L1 on Nehalem and newer

microarchitectures except Xeon CPUs [123]
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actually behave as prefetches. The original tool is designed to be used via the command-line; I modified it
to implement support for exception handling (so that faulting instructions can also be benchmarked, albeit
with overhead from the OS- and user-level exception handling) and to support its usage as a shared library,
then developed a Python script using this shared library to read in and benchmark instructions from a file
(such as a parsed Sandsifter or OpcodeTester log). As there are other use cases for this adapted tool beyond
undocumented instruction testing, I have released it as a fork of the original repository on GitHub [140].
The main development challenges were understanding how NanoBench produces its benchmarking code and
correctly parsing the instructions from a file. NanoBench assembles the provided assembly code (a step which
can be skipped in this case), reproduces it many times to increase the measurement window and then adds
in the relevant machine code for using the performance counters before and after; when handling exceptions
with sigsetjmp and siglongjmp this ’after’ code never runs, so unless this code is isolated and called man-
ually afterwards the performance counters are not stopped and the measurement values overflow. Parsing
instructions from a file was surprisingly challenging: for readability, the best way to log instructions is as an
ASCII representation of the hex bytes (e.g. 0x90 for nop), but such representations frequently contain ’00’
(particularly instructions produced by tunnelling, as the algorithm aims to keep as many bytes at 0x00 as
possible to reduce the risk of memory corruption). ’00’ is misinterpreted by C string functions as the null byte
string terminator and so instructions are only partially parsed. This was the motivation for parsing the file in
Python, but even in this setting correctly converting the ASCII to hex and then into a C-compatible ctypes
format required testing of many different strategies; ultimately, using the bytearray.fromhex() function
and converting this to a ctypes char array proved effective.

I used the modified tool to compare the behaviour of prefetchw and the undocumented prefetchwt1,
measuring µops retired, µops dispatched onto ports 2 and 3 (the ports used by documented prefetches, ac-
cording to the uops.info dataset [141]), and µops triggering memory loads with L1, L2, or L3 hits or misses
(with each cache statistic measured separately). I found no discernable difference between the instructions
- or indeed between prefetchw and the other ModR/M values - suggesting that Intel have indeed followed
AMD and implemented 0f 0d /2 and /3-7 as aliases of prefetchw (other than on the Kaby Lake microar-
chitecture). They consistently demonstrated a single retired µop, an average of 0.5 µops on both port 2 and
port 3 (as the scheduler spread the repeated measurements between the two ports), and a single L1 cache hit.

4.2 Searching the Instruction Space
I improved OpcodeTester’s instruction testing framework by making the same changes discussed in Section
3.2 for RISC-V, such as adding a separate stack for the signal handler, using sigsetjmp and siglongjmp,
and forking a different child process for each instruction test. This improved stability sufficiently to conduct a
timing attack on the entire space of possible three-byte instructions (see Section 4.2.3), which was previously
impossible due to the frequency of crashes [2]. In addition to this search method, I also implemented directed
and random search strategies in OpcodeTester, and explored how the tunnelling algorithm can be used to
visualise the instruction space and to reverse-engineer instruction decoding behaviour.

4.2.1 Directed and Random Search
Directed search. I manually identified 765 gaps in the Intel and AMD opcode maps to produce an instruction
test tailored to encodings most similar to documented encodings. Although this approach appears naive (a
manufacturer trying to conceal an instruction would presumably not choose a conspicuous blank in the opcode
map for the encoding!), there are precedents of this occurring on x86 (such as salc, as discussed in Section
1.3), and if the instruction decoders do have any design flaws then instruction encodings differing by only
one or two bits from documented encodings are the most likely to activate the same bitfields in the decoding
circuitry. All 765 instructions correctly produced an illegal instruction exception on Broadwell.

Random sampling. Sandsifter’s random fuzzing implementation uses the low-entropy pseudo-random num-
ber generator (PRNG) function rand to create ’random’ instructions. Domas notes in the source code that
this produces an uneven distribution, and this was apparent in the random Sandsifter tests run on Intel Bonnell.
To achieve a more even distribution for better coverage of the instruction space I added support for random
fuzzing to OpcodeTester using the PRNG function arc4random function from OpenBSD to randomise instruc-
tion lengths from 1 to 15 bytes and instruction bytes from 00 to ff. arc4random uses the ChaCha20 stream
cipher to generate its number stream, which offers significantly higher-quality pseudo-randomness compared
to rand [142]; the PRNG is also manually reseeded with data from getentropy every 10 instructions. I
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then conducted random fuzzing with OpcodeTester on Broadwell and Bonnell. These tests produced some
fascinating results, identifying hundreds of instructions beginning with c5 (on Broadwell) and f0 (on both
microarchitectures) as potentially undocumented instructions which displayed erratic exception behaviour and
occasionally executed. Unfortunately, after considerable investigation these were found to be false positives,
but this did help identify an insidious bug in the test mechanism used both by OpcodeTester and by NanoBench;
see Section 4.3.1 for discussion.

4.2.2 Mapping Instruction Decoding
As described in Section 2.3, Sandsifter’s tunnelling algorithm uses decoded instruction lengths to guide its
search through the instruction space. Using Sandsifter’s page-fault technique, instruction lengths can be de-
termined even for faulting instructions, which may in fact be valid instructions in a different CPU mode or at
a higher privilege level (than the testing context of ring 3 and 64-bit mode). However, Sandsifter incorrectly
assumes that such instructions will always fault with a #GP exception [5], when in fact both Intel’s and AMD’s
documentation state that such an instruction may also fault with an #UD exception: despite its ’UnDefined’
memonic, the exception indicates merely that the instruction is currently, but not necessarily permanently,
invalid. Examples of this include instructions invalid in 64-bit mode such as salc and popa, sysenter and
sysexit (when in long mode), and rsm (when not in SMM) [91] [125]. The behaviour of the decoder is there-
fore potentially far more informative than monitoring exception behaviour, as we cannot assume the distinction
that #GP-faulting instructions are valid under other conditions and #UD-faulting instructions are completely
unimplemented. To investigate this, I explored how the outputs of tunnelling could be graphed as a ’map’
of the decoded instruction space. Even when reduced by tunnelling, the size of the instruction space poses
significant challenges for visualisation; the quantity of data (approx. 5GB for each microarchitecture) causes
out-of-memory errors with matplotlib unless data structures and memory usage are very carefully managed,
and the vast range of instruction values means that individual instruction anomalies are easily missed when
scaled to fit all instructions into a single graph.

Figures 4.1 and 4.2 are the outcome of this investigation, mapping 1-byte opcodes across the instruction
space on Broadwell and Bonnell respectively (note that 2- and 3-byte opcode instructions have also been
plotted, but are visually indistinguishable, as their 0f prefix compresses them all into the region marked in red
on Figure 4.1). Whilst some information is inevitably lost at this scale, the ’maps’ are remarkably informative.
They facilitate visual comparison of the two microarchitectures’ decoders, demonstrating that their decoding
behaviour is almost identical despite their numerous other implementation differences. The key differences
visible are that the a0 encoding of mov takes a 64-bit operand on Broadwell (note: AMD’s documentation
is far clearer regarding this than Intel’s [125] [91]) vs. a 32-bit operand on Bonnell (producing the bar of
length 9 on the Broadwell graph and length 5 on the Bonnell graph), and that there is a denser concentration
of length 7 instructions around 62/63 (marked as bound on the Broadwell graph) on Bonnell. The denser
instructions around bound are due to the arpl instruction, which is not encodable in 64-bit mode; opcode 63 is
repurposed to implement the movsxd instruction. Given the numerous implementation differences between the
two microarchitectures and the fact that Bonnell supports the 32-bit version of the ISA rather than the 64-bit
version supported by Broadwell (as tested in 64-bit mode), the similarity is quite surprising and highlights the
advantages of examining decoding behaviour rather than exception behaviour. Rather than discovering only
the instructions we are currently allowed to execute, we can discover other exceptions potentially executable
only in other modes or under certain architectural conditions. For example, 32-bit mode instructions unavail-
able in 64-bit mode (which are not repurposed as different instructions and so are entirely invalid) can clearly
be seen in Figure 4.1, such as push/pop es, push cs, push/pop ss, push/pop ds, daa, das, and aad
(marked as 06/07, 0e, 16/17, 1e/1f, 27, 2f, and 37 respectively).

In addition to facilitating comparison of decoding across microarchitectures, this approach facilitates visual
identification of decoding anomalies. In particular, there are 505,123 decoded instructions beginning with the
opcode c7 which are entirely undocumented (the penultimate bar of length 11, and along with its neighbouring
instructions). The opcode c7 /0 is documented as one of the many mov encodings, but all other ModR/M
register field values are only defined if preceded by an EVEX prefix (/2 and /6-7) or by 0f (/1 and /3-5). These
encodings are particularly intriguing because 67,584 of them also have the longest instruction length possible
with a one-byte opcode without using prefixes (11), which suggests they comprise an opcode, ModR/M byte,
SIB byte and 64-bits of displacement and/or immediate bytes. (Note: c7 f8 is also documented as xbegin,
which is not included in these encodings.) I hypothesised that the decoder might be ignoring the absence of
an EVEX prefix when determining instruction length for /2 and /6-7 encodings, as the fact that Broadwell
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and many other microarchitectures can decode an unlimited number of (non- length-changing) prefixes per
cycle suggests that prefix decoding may be implemented separately to other decoding logic [130]. It seemed
unlikely that the decoder might ignore the absence of 0f for /1 and /3-5 because 0f is part of the opcode
for these encodings rather than a prefix. However, this proved incorrect: although the length decoded varies
(6, 7, 8, 10, or 11 bytes) it is not dependent on the ModR/M reg field or any other aspect of the ModR/M
byte, so the variations in decoded lengths are clearly an artefact of a different aspect of the decoding logic.
Whilst the decoding behaviour of these 505,123 instructions remains a mystery, this example demonstrates
how mapping the instruction space can facilitate reverse-engineering of decoding.

4.2.3 Three-Byte Timing Attack
[106] presented a methodology for identifying undocumented MSRs via a timing attack. Theoretically, an MSR
which is implemented but protected by privilege checks or a state condition such as a register password might
take longer to access than an unimplemented register (due to the logic overhead of the privilege/state check),
or alternatively might be faster if recovery from an unimplemented MSR access is more complex than the logic
required for the privilege check. Regardless of whether it is faster or slower, it should produce a timing anomaly
because the access will necessarily activate different logic in the CPU. This same timing attack methodology
can also be applied to instruction testing. The mapping of the decoder in Section 4.2.2 demonstrates that
the decoder still correctly decodes instructions which are invalid in the current mode (rather than having
entirely separate decoding circuitry for each mode); at which stage in the pipeline, then, is an instruction
actually identified as illegal? Could an instruction have effects prior to exception generation (such as a register
password check for a debug instruction, as with [96]) which would introduce detectable timing anomalies? To
investigate this I conducted a timing attack on all possible illegal 3-byte encodings on Broadwell and Bonnell.
The results shown in Figures 4.3 and 4.4 strikingly demonstrate the execution differences between the 32-bit
and 64-bit versions of the ISA: whilst decoding behaviour may be almost identical for each instruction, timing
is certainly not!

The timings for each instruction were produced by averaging 10,000 measurements using the combination
of cpuid and rdtscp (or rdtsc on Bonnell) recommend by Intel in [143] to serialise the measurements and
instruction testing (excluding steps only possible in kernel-mode such as disabling interrupts). Before aver-
aging, outliers were removed: the first and second tests of an instruction are always slower (presumably due
to the instruction not yet being present in the instruction cache) and so are skipped, as are any subsequent
measurements >1000 cycles higher than the current average (as these are presumed to indicate external events
such as the process being scheduled or the CPU entering and returning from SMM). The timings include the
overhead of OS- and user-level exception handling (which cannot be entirely eliminated when testing in user
mode) and of reading and storing the values of all architectural registers to detect any register state change.
Note that the seemingly solid bar of instructions with timings below 4000 cycles in Figure 4.3 is an artefact
of the sheer number of illegal instructions to test on 64-bit vs. 32-bit x86 (1,676,054 vs. 478,795, as many
one-byte encodings are valid only in the 32-bit version of the ISA); there are actually legal instructions within
this space which were not tested and at a larger scale would appear as gaps. Due to the performance differ-
ences between the two microarchitectures, the timings are at very different scales; the time taken for a typical
illegal instruction on Bonnell (approx. 20000 cycles) exceeds the very highest anomalies on Broadwell, where a
typical time is approximately 3600 cycles; these reliable ’baselines’ are the overhead produced by generation of
an #UD exception, with timing anomalies higher than this indicating that an additional event occurred in the
pipeline. Red lines indicate instructions faulting with a segmentation fault rather than an illegal instruction
exception; it is apparent that these are faster on average than #UD exceptions on Bonnell, suggesting that
#GP exception handling may have a substantially different implementation in the CPU. However, this could
instead indicate that the front-end detects #GP instructions faster: it is not apparent from these timings at
which stage in the pipeline delays occur.

On Broadwell, the vast majority of timing anomalies are concentrated between 00 00 00 and 3f ff
ff. This is the space most densely populated by instructions valid in 32-bit mode only, and examining the
instructions with the 15 highest average times suggests that this is indeed the cause of the anomalies, as they
are all sequences containing at least one valid 32-bit mode instruction. The few anomalies outside this space
are also at least partially valid 32-bit sequences. It appears that the presence of a single valid 32-bit instruction
at the start of the sequence is sufficient to produce an anomaly, even if the sequence is not valid in its entirety.
There were however some exceptions to this which are discussed further in Section 4.3.1.
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On Bonnell these 32-bit mode anomalies do not occur, as the instructions are valid and are therefore
not tested. Instead, the anomalies found appear to demonstrate the limitations of Bonnell’s two instruction
decoders. Each decoder can decode a maximum of one instruction per cycle [123]; however, it appears that
in this test instructions are decoded more slowly with initially only the first byte being processed, as the top
anomalies are instructions which based on their length and first byte alone could be valid instructions, but are
rendered invalid by their second or third bytes. For example fe 22 c3, which has the highest average time
of 35,166 cycles, contains no valid instructions but with a different second byte such as 00 would be a valid
instruction sequence (inc and ret). This suggests the decoders may be initially checking the first byte alone
before checking later bytes in subsequent cycles.

These observed behaviours may be an artefact of the test mechanism (for example, the instruction under
test might by chance be lying across the boundary of two instruction fetches on Bonnell) rather than indicative
of the behaviour of the microarchitectures’ decoders in general. However, as the behaviour is reproducible
it demonstrates how a timing attack could detect undocumented instructions, which would be indicated by
unexplainable timing anomalies. A slower instruction on Broadwell which contains no valid 32-bit instructions
might indicate an undocumented instruction only valid in another mode/state (such as an SMM-only instruc-
tion). Bonnell’s behaviour is unfortunately less useful, as there is no first byte which is guaranteed to be
invalid for any documented instruction, but anomalies with uncommon first bytes would suggest a potentially
undocumented instruction worthy of further investigation.

Westmere ’HCF’ Instruction

Whilst carrying out the 3-byte timing attack on Intel Westmere I found an instruction I suspected to be a HCF:
01 52 96 (a documented instruction, add dword ptr [rdx-0x6a],edx). When executed within the timing
attack code it appeared to hang the system, although with constant hard drive activity; rebooting subsequently
required removing the laptop’s battery. After reproducing this several times I tested the instruction within a
minimal test program outside of the timing attack code and found that under these conditions it executed
normally; in order for the crash to occur, the test function must be run in a child process with a parent
process waiting for its completion. I could not reproduce the crash on Broadwell (executing identical assembly
code) but did note that the program took considerable time to complete, showing high memory usage and
high CPU usage by kswapd0, an OS process which manages virtual memory. This led me to suspect that the
instruction was somehow causing significant memory allocation which led to the system running out of memory
on Westmere. Subsequently I found that that the system remained somewhat usable via the TTY console; the
system was running out of memory after the test program had allocated more than 12GB of virtual memory,
explaining the constant hard-drive activity. I suspect this is a bug in the specific kernel version’s memory
management or perhaps in a driver, but have been unable to investigate further as the Westmere platform
suffered hardware failure soon afterward.

4.3 Instruction Testing Techniques
4.3.1 Pitfalls of Variable-Length Instructions
As described in Section 3.4, on RISC-V the Compressed extension complicates testing for undocumented in-
structions, as it is not obvious whether an executed ’instruction’ is a single 32-bit instruction or two 16-bit
instructions. The variable-length encoding of the x86 ISA increases this challenge enormously, as an instruction
can have any length from 1 to 15 bytes. During the random fuzzing and timing attack tests on Broadwell
and Bonnell I encountered bizarre instruction behaviour ultimately caused by an insidious flaw in my test
mechanism. The ambiguity of variable-length instruction encoding makes a flaw such as this very challenging
to detect because in the vast majority of cases testing appears to work correctly, which is why I believe this
issue is worth highlighting for any future implementation of self-modifying code on x86.

The behaviour I observed was that f0f6 often (but not always) ran on both microarchitectures, as did
a variety of undocumented instructions beginning c5 on Broadwell. Others even appeared to produce archi-
tectural state changes (Listing 4.1), and on Bonnell behaviour was even stranger. Data corruption of the
instruction bytes appeared to be occurring, as shown in Listing 4.1 with the sudden jump from 0f0d13 to
c10d14 and d70d15 before returning to 0f0d16. Note that the error codes in the Listing are those returned
by the XED disassembler for each instruction, and the avg/min/max values are cycle counts.
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c50a RAN 0 GENERAL_ERROR avg 152 min 20 max 638
f0f6 RAN 0 BAD_LOCK_PREFIX avg 48 min 47 max 344
0f0d10 RAN 0 INVALID_FOR_CHIP avg 19 min 18 max 145
c57b RAN 0 GENERAL_ERROR avg 19 min 18 max 142
c5f5 RAN 0 GENERAL_ERROR avg 19 min 18 max 142
State change : rcx: 0 2451587878 , rflags : 582 646

0f0d13 RAN 0 INVALID_FOR_CHIP avg 452 min 372 max 42708
c10d14 EXCPT 11 INVALID_FOR_CHIP avg 9616 min 9432 max 94356
d70d15 EXCPT 11 INVALID_FOR_CHIP avg 9637 min 9444 max 110472
0f0d16 RAN 0 INVALID_FOR_CHIP avg 454 min 372 max 2412

Listing 4.1: False positives from the timing attack on Intel Broadwell (above) and ’data corruption’ in the
timing attack on Intel Bonnell (below).

After considerable debugging attempting to reliably reproduce the behaviour, I found a bug in my code:
the test array was not reset after each instruction test, so in a small number of cases the ret byte following the
test code would be interpreted as part of a longer multi-byte instruction rather than as a ret, and execution
would continue using previously-tested bytes and even beyond the limit of the test array until an exception
occurred (often coincidentally producing VEX-encoded instructions if the instruction began with c4 or c5,
hence the frequency of strange behaviour with these instructions). Overwriting the test bytes with zeroes at
the start of each test iteration appeared to have entirely resolved this issue, until the ’data corruption’ in the
log files appeared again on Intel Bonnell. The bug had in fact not been resolved at all; it had merely been
made even more infrequent and insidious. The fundamental problem is that x86’s instruction encoding is so
ambiguous that there is no instruction which can be inserted after the tested instruction to guarantee a return
from the test mechanism (either via a jump, return, or triggering an exception); there is always a slight risk
that the instruction’s bytes will be interpreted as part of a longer instruction. The int 3 instruction (cc,
which produces a debug exception) seems the most plausible option, given that it is specifically designed to
be inserted into code for debugging. However, in the three-byte timing attack 122,884 encodings featuring
a cc byte are tested, none of which trigger a debug exception on Broadwell or Bonnell, so this instruction
too cannot be relied upon. There is also no byte pattern which can be used to safely overwrite the test
bytes, as even zero bytes can encode add instructions (00 00 is add byte ptr [rax], al). This is a crucial
difference from RISC-V where 16- or 32-bit patterns of zeroes are defined as illegal.

Whilst no reliable mechanism exists which can be inserted after the tested instruction, setting the trap
flag before the instruction is executed guarantees that only a single instruction will run before the CPU
generates a debug exception. To set it, the relevant machine code2 must be inserted directly into the test
array before the instruction under test; setting the trap flag before calling the test function will trap on the
function call, and I found that Linux’s handling of the trap flag prevents it being successfully re-enabled in a
user mode signal handler on each exception. Exceptions due to invalid encodings, such as #UD and #GP,
take precedence over the debug exception and so the exception behaviour of each instruction can still be
determined. This is the mechanism used by Sandsifter, and it is important to not overlook this as a mere
design choice: it is an essential prerequisite for accurate results due to the inherent ambiguity introduced
by variable-length encoding. Unfortunately, handling the debug exception adds substantial overhead to any
performance counter measurements or timings, which makes this mechanism unsuitable for attempting to
infer instruction functionality with performance counter measurements or for microbenchmarking as in the
NanoBench tool, which still uses ret after the tested instruction. This may explain some of the variance in
instruction latency observed in production of the uops.info dataset with NanoBench [141], and raises some
concern about its accuracy; however, it appears that in the absence of any other reliable mechanism a trade-off
in accuracy is necessary to conduct any microbenchmarking or timing of instructions.

4.3.2 TSX RTM
As discussed in Section 2.3, Intel Transactional Synchronization Extensions (TSX) can be used for exception
suppression. If code faults within a Restricted Transactional Memory (RTM) transaction, not only will the
exception be suppressed but also all modifications to architectural state within the transaction will be rolled

29c 48 81 0c 24 00 01 00 00 9d for pushfq; orq $0x100,(%rsp); popfq on 64-bit - remove the REX 48 byte for 32-bit.
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asm volatile (" xbegin ABORT");
(( void (*)()) execInstruction )();
asm volatile ("xend; ABORT:");
asm volatile ("mov %%eax , %0;" : "=r" ( abortCode ) : :);
if( abortCode == 16) printf (" Instruction ran\n"); // reached INT3
else printf (" Instruction faulted \n"); // exception before INT3

Listing 4.2: Using TSX RTM instructions to test instructions and suppress exceptions.

back. This provides a compelling alternative to the existing instruction testing framework: the state rollback
prevents memory or control flow corruption (restoring the entire architectural state, unlike the limited execu-
tion context restored by siglongjmp). Listing 4.2 provides a minimal code example: if an exception occurs
between xbegin and xend, the transaction is aborted, architectural state is rolled back, and control flow is
transferred to the ABORT label. Exception suppression is of particular value for kernel-mode testing: the travails
of kernel-mode exception handling [2] can be completely avoided with this method. Using RTM is on average
95.8% faster than the initial framework when testing the faulting ud2 instruction over 1,000,000 repetitions;
as the exception is never delivered to the OS, the overhead of OS- and user-level exception handling is removed
entirely. This astonishing performance improvement could enable significantly improved coverage of the search
space to be achieved.

However, this approach also has major disadvantages. The trap flag cannot be used (so we must face the
potential instruction misinterpretation described above); we cannot distinguish between different exception
types, beyond the categories ’no exception’, ’debug exception’ and ’other exception’; hardware performance
monitoring counters cannot be used to infer an instruction’s behaviour; and there are a range of valid in-
structions which cause an immediate abort and so will appear invalid (such as privileged instructions, x87
instructions, and MMX instructions [123]).

Setting the trap flag within the transaction causes an abort, and similarly if we set it before the transac-
tion it aborts immediately with a debug exception. Setting bits 11 and 15 of IA32_DEBUGCTL MSR enables
advanced RTM debugging [91], but all this allows us to do is trap and loop back to the start of a transaction
when the first debug exception occurs, and as we must set the trap flag before the start of the transaction,
the first debug exception will always be before the instruction is tested (it occurs immediately after xbegin).
To somewhat mitigate this issue, we can add an int 3 instruction byte to the unsigned character array after
the instruction bytes to be tested. As discussed above, this is an instruction specifically designed for setting
breakpoints at arbitrary code locations, so the instruction decoder is presumably optimised to detect this as
a one-byte instruction in most cases, but is not guaranteed to do so. We can easily distinguish between the
debug exception generated by int 3 and the other exceptions caused beforehand if the tested instruction
faults, as the abort code for the transaction is 16 for a debug exception and 0 for other exceptions. (Note: for
each execution of the program, an error of 0 is returned the first time the instruction array is executed within
a transaction; I am unsure why this occurs, as whilst setting the Accessed and Dirty bits of a page can cause
a TSX abort, these should already be set for the test array.)

Finally, the Broadwell microarchitecture under test also has an erratum concerning TSX: "Under a complex
set of internal timing conditions and system events, software using the Intel TSX (Transactional Synchroniza-
tion Extensions) instructions may behave unpredictably" [87]. This is so vague that it is difficult to verify
whether this ’unpredictable’ behaviour is occurring, but the error code behaviour certainly does seem to be
erratic. In testing, valid, non-aborting instructions generally produce the expected error code of 16, incorrectly
return 0 at a rate of approximately 30-70 incorrect return codes per 10 million. Whilst this does reduce the
reliability of the results, this is still a low error rate of <= 0.0007%. It would be worthwhile to investigate this
further on alternative TSX-supporting microarchitectures to test whether this is caused by the erratum.

4.3.3 Specpoline
[144] initially described repurposing the speculative loop of a retpoline (see Section 2.3) for microbenchmarking,
coining it the specpoline, and [68] subsequently used the mechanism to leak FPU register state. Akin to TSX,
the specpoline can also be used to suppress exceptions from instruction testing, but adds an additional layer
of indirection by only ever executing the instruction speculatively. Placing the instruction under test in the
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asm volatile ("push %1; \n\
call trampoline ; \n\
speculoop : \n\
call %2; \n\
jmp speculoop ; \n\
trampoline : \n\
mov %%rsi , %0 \n\
mfence ; \n\
lea rsp , [rsp +8] \n\
ret" : "=m"(slug) : "r"(&& escape ), "r"(& execInstruction ) :);

escape :

Listing 4.3: Using the modified specpoline within C code (GCC inline assembly, Intel syntax). A second indirect
call is added to automate instruction testing, along with a ’slug’ to slow non-speculative execution.

speculative loop (or speculoop) of the retpoline (using .byte to insert arbitrary instruction bytes into the
assembly) forces the processor to speculatively execute the instruction many times before it identifies that it
has mispredicted the branch target. Such repeated execution amplifies any transient execution effects so that
they are more noticeable. The specpoline is a valuable complement to Intel TSX as it can be used to test
instructions unsupported by RTM (which always cause transactional aborts) without abandoning the stability
and speed benefits of exception suppression. Unfortunately, instruction testing cannot be automated with
the retpoline shown in Listing 2.1 in Section 2.3.1 because the byte(s) inserted into the assembly must be
immediate rather than variable values. In order to change the bytes at runtime, we must add yet another layer
of indirection: the speculoop itself makes an indirect call to the array of test bytes. This adds considerable
speculation overhead; however, if the the trampoline is modified so that non-speculative execution is much
slower then there is sufficient time for speculative execution of the instruction. (Speculation overhead was
determined by comparing the ratios of µops issued to µops retired; see Section 4.4.2 for further discussion of
specpoline results.) Listing 4.3 demonstrates how this stall can be achieved by storing the stack pointer to
an irrelevant address in memory (the slug variable) and calling mfence to force in-order execution to stall
until this write is complete. Unlike when testing with TSX RTM transactions, speculative execution does not
require an initial, non-speculative instruction test (either within or without a transaction) in order to succeed
in transient execution.

4.4 Investigating #UD Instructions
4.4.1 Decoding Bug
In my prior research project I found undocumented exception behaviour on Broadwell when testing UD-faulting
instructions in ring 0 on Ubuntu 17.10, 17.04 and 16.04 [2]. When instructions longer than 4 bytes were tested
within a kernel driver, the return instruction pointer provided to the die notifier was two bytes into the in-
struction, contradicting Intel’s documentation that all trap and fault exceptions are guaranteed to be reported
on an instruction boundary. This behaviour reliably occurred across hundreds of thousands of different invalid
instructions, excluding the possibility that the first two bytes formed a valid instruction by chance which was
then executed before the exception. This suggested mishandling of the return instruction pointer by the the
Linux kernel or the CPU itself, or perhaps even partial execution of the invalid instruction - could this perhaps
indicate that these were undocumented instructions which could be valid given certain architectural state? I
was unable to determine the cause of this behaviour and so in this project I planned to investigate further.
It is a serious concern if the CPU returns the wrong instruction pointer to resume execution at after a fault
exception such as #UD, as this could potentially be exploited to crash the system or manipulate control flow.

To my surprise I found that it is no longer possible to replicate this behaviour on Intel Broadwell. I initially
suspected that this was due to small changes in handling of the return address in the Linux kernel in traps.c
[145]. However, the corrected behaviour occurs not only in Ubuntu 18.04 (kernel 4.15.0-46) but also on a
VM (Ubuntu 17.04, kernel 4.13.0-43) and a live USB install (Ubuntu 16.04, kernel 4.13.0-43) which had
both previously exhibited this behaviour and had not been updated since the previous project. The change
is not due to updated microcode loaded by Linux, as this is unchanged across the Ubuntu versions (revision
0x2b, 2018-03-22). This appears to rule out the possibility that the behaviour was caused by the operating
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system. However, a major BIOS update was conducted after the research project (from Dell Inc. Latitude
E7450/06HN6G BIOS A09 to BIOS A19) which installed multiple microcode updates and patches for Intel
ME and SMM. Due to the risks of a BIOS downgrade I was unable to attempt this during the project to
confirm the BIOS update as the cause, but it appears to be the only remaining possibility, suggesting the
behaviour was indeed a bug which was identified by Intel and patched in microcode. This highlights both
the benefits and dangers of microcode: it is positive that such a serious hardware bug can be fixed entirely
in microcode, but it is troubling that opaque microcode updates can make such substantial changes without
any disclosure. Whilst this particular update likely did not break any software beyond my own as exception
handling in a kernel driver is rare, it is foreseeable that other such unannounced changes to exception handling
might introduce insidious vulnerabilities into drivers or, in particular, into the operating system’s exception
handling; as discussed previously the mov/pop SS vulnerability highlighted how security-critical correct OS
exception handling can be [90].

4.4.2 Transient Execution
"In Intel 64 and IA-32 processors that implement out-of-order execution microarchitectures, this
exception is not generated until an attempt is made to retire the result of executing an invalid
instruction; that is, decoding and speculatively attempting to execute an invalid opcode
does not generate this exception." [91]

In my previous research project I discovered this suspicious wording in Intel’s documentation and identified
this as an area for further research. As previously discussed in Section 4.2.2, some instructions which are
currently invalid but valid in a different mode/state fault with #UD. In contrast to fully undocumented in-
structions, these instructions clearly have defined implementations in the CPU pipeline; given recent evidence
that instructions do leave transient execution traces before a #GP exception [20], this raises the question of
whether such instructions might partially or fully transiently execute prior to generation of the #UD exception.
If we can indeed detect transient execution of #UD-faulting instructions, then this enables a new strategy
for detecting undocumented instructions: if we can detect transient traces of an instruction which has no
documented function in any CPU mode/state, then we can infer that it is implemented in the pipeline and
will execute under certain conditions. This would allow us to narrow the search and focus intensely on fuzzing
this instruction with a wide range of different states; whilst the complexity of microarchitectural state renders
full coverage of the state space impossible, a focused search would have a much higher probability of success
than attempting to cover all register states for all possible instructions.

[1] appears to be the only prior research into transient execution of #UD-faulting instructions. This work
observed no evidence of transient execution following an #UD exception (or following #DE, #PF, #AC, #SS,
or any trap or abort class exceptions), and hypothesised that exceptions triggered in the instruction fetch or
decode stages are handled immediately, with the corresponding instruction never entering the reorder buffer.
However, this seems unlikely. We already have Intel’s statement in their documentation that the CPU may
decode and then speculatively attempt to execute an invalid opcode, and immediate exception handling at
fetch/decode would surely also produce imprecise exceptions inconsistent with x86’s architectural guarantees;
Intel’s documentation is unequivocal that (non-abort) exceptions are not signalled until the retirement stage,
which suggests they must enter the reorder buffer [123]. Their explanation for this hypothesis is also based on
the incorrect assumption that the CPU cannot transiently execute instructions beyond an illegal instruction
because illegal instructions have an undefined length. As discussed in [5] and visualised in Section 4.2.2, illegal
instructions do have defined lengths, with the decoder consistently stopping after a given number of bytes for
each illegal encoding.

One possibility is that the pipeline is stalled as soon as the exception is generated at the fetch or decode
stage: all instructions already in the pipeline (including the excepting instruction) continue executing, the
results of non-speculative instructions are committed in order and those of speculative instructions are ig-
nored, and no subsequent instructions are allowed to enter the pipeline until the excepting instruction reaches
the commit stage and then the exception is allowed to occur. However, given Intel’s aggressive performance
optimisation it seems unlikely that they would wish to stall the pipeline entirely when an illegal instruction
is encountered. Whilst with in-order, non-speculative execution it may be a sensible design choice to stall
subsequent instructions as the pipeline will only need to be flushed anyway, with out-of-order and speculative
execution this might be completely unnecessary; the exception may never actually commit, for example if the
instruction’s branch were mispredicted.
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A search of the patent literature suggested several possibilities: [146] describes how an exception event
might be generated at the reorder buffer, whilst [147] describes a separate exception pipeline parallel to the
regular pipeline, and another features an invalid instruction circuit in the decoder which tests for invalid
instructions and inserts a preset flow of µops to indicate the #UD exception should be generated [148].
The latter would explain the findings of [1], although of course manufacturers may patent many inventions
which are subsequently unused or discontinued in their products, so there is no guarantee that the Broadwell
microarchitecture uses any of the mechanisms described. As the potential for transient execution was still
unclear I decided to run experiments using the specpoline mechanism to identify which instruction types showed
detectable traces of speculative execution (I did not investigate out-of-order execution).

4.4.3 Experimental Implementation
To clarify the exact settings used on Broadwell as the OS, compiler, microcode revisions and enabled Spectre
mitigations are highly relevant to the behaviour of the specpoline: the experiments were conducted on Ubuntu
18.04.2 (kernel 4.15.0-47.50-generic) with Intel microcode revision 0x2b, GCC 7.3.0, HyperThreading manually
disabled in the BIOS, and the following transient execution mitigations: PTI (Meltdown), PTE inversion and
VMX conditional cache flushes (L1TF), user pointer sanitization (Spectre v1), full generic retpoline, IBPB,
IBRS_FW (spectre v2), and speculative store bypass disabled via prctl and seccomp. Of these, only the
Spectre v2 mitigations are of direct relevance to the specpoline results. Retpoline is only applied to the kernel
and any software specifically compiled to use retpoline; the indirect branch prediction barrier (IBPB) prevents
user mode and guest processes controlling predicted branch targets of other processes across context switches;
and with the IBRS_FW setting indirect branch restricted speculation is only applied for firmware calls. These
mitigations therefore do not prevent use of the specpoline to target indirect branch speculation on a controlled
user mode process, provided a context switch does not occur. I also confirmed the specpoline was unaffected
by the Spectre v2 mitigations by repeating several of the experiments with the mitigations disabled on kernel
boot, producing identical results. Recompiling with the GCC -mindirect-branch=thunk-extern compile
flag also does not affect the results or the object code disassembly; it appears GCC does not apply retpoline
to inline assembly.

With the specpoline mechanism for transient execution of undocumented instructions (as described in
Section 4.3.3) in place, hardware performance counters can be used to measure the transient effects of
undocumented instructions. Bad speculation is a metric for the quantity of µops which the CPU mispredicted
and subsequently had to flush from the pipeline. Intel provide the formula

100 ∗ ((uops_issued.any − uops_retired.retire_slots + 4 ∗ int_misc.recovery_cycles)/N)
where N = 4 ∗ cpu_clk_unhalted.thread

for determining the percentage of bad speculation [123]. If there is significant bad speculation, the speculoop
must have executed unhindered and therefore we can infer that the instruction did produce transient µops
which entered the pipeline. Conversely, if there is low bad speculation then we can infer the instruction did
not produce transient µops and therefore exception detection must occur early at the fetch/decode stage. I
began testing this on a small set of instructions using the original specpoline without a second indrect call
(inserting bytes into the retpoline of Listing 2.1).

As shown in Table 4.4.3, if the speculoop is removed there is only 6.35% bad speculation. With an empty
speculoop, this increases to 9.96% as there are many mispredicted speculative instructions issued (for the
speculoop’s jmp instruction as it loops over and over); and with a valid nop instruction within the loop,
there is yet more bad speculation at 13.48% (with jmp and nop now being issued repeatedly). Note that the
abbreviations used to categorise instructions are: UD64 (#UD faulting when not in SMM, but valid in 64-bit
mode); UD32 (only valid in 32-bit mode); UDA (architecturally-defined illegal instruction whose exception
occurs after execution, unlike other #UD-faulting instructions); BP (produces a #BP trap); V (valid, does
not produce an exception); S (fully or partially serializing); and GP (produces a #GP exception). The results
are averaged over 100000 iterations and are reproducible: between separate tests there is very little variance
in the counts, particularly the execution port counts.

The first three tests would all have run without faulting had they been executed non-speculatively. With
these control results as a baseline, the behaviour of faulting instructions can be compared. The serialising
instruction wbinvd behaves almost as if there were no speculoop at all, with an identical number of µops
issued and retired. This is as expected given that the instruction is serializing. Speculation of other faulting
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Instruction Type Spec% Issued Retired Recovery Clocks Ports
no loop V 6.35 57 64 10 130 6 12 2 3 7 18 18 2

empty loop V 9.96 75 64 10 128 6 12 2 3 7 30 30 2
xbegin V 13.57 93 63 10 129 12 17 3 5 13 30 30 2

nop V 13.48 93 64 10 128 6 12 2 3 7 30 30 2
pushfq V 13.46 93 63 10 130 16 19 4 10 7 27 27 6

test V 13.37 92 63 10 129 11 16 2 3 14 32 32 2
rdrand V 12.3 86 63 10 128 12 14 2 3 9 26 26 2
cpuid VS 11.52 62 63 15 128 5 11 2 3 7 26 26 2
popfq V 7.62 62 63 10 128 7 13 2 3 9 19 19 2

mfence VS 6.45 56 63 10 128 5 11 3 4 7 20 20 2
hlt VS 6.59 57 63 10 129 6 11 2 3 7 20 20 2

pause VS 6.84 58 63 10 128 5 11 2 3 8 23 23 2
wbinvd GPS 6.45 57 64 10 128 5 12 2 3 7 21 21 2
swapgs GP 7.63 62 63 10 128 5 12 2 3 9 23 23 2
sysexit GP 8.2 66 64 10 128 7 14 2 3 10 24 24 2
int 3 BP 7.23 61 64 10 128 7 13 2 3 9 20 20 2
ud2 UDA 6.84 59 64 10 128 6 12 2 3 7 22 22 2
rsm UD64 6.84 59 64 10 128 5 12 2 3 8 22 22 2
salc UD32 6.84 59 64 10 128 7 12 2 3 7 20 20 2
aaa UD32 6.84 59 64 10 128 7 12 2 3 7 20 20 2
aad UD32 6.84 59 64 10 128 7 12 2 3 7 20 20 2

popa UD32 7.03 59 63 10 128 7 11 2 3 7 20 20 2

Table 4.2: Specpoline results on Intel Broadwell.

instructions is clearly markedly hindered in comparison to the nop or empty loop. There are many possible
explanations for this: the exception-handling circuitry may add timing or µop overhead (Broadwell can only
handle up to a maximum of 192 µops in flight in the pipeline) to execution of the speculoop, resulting in fewer
iterations before the branch misprediction is detected; there may be a physical limit to how many exception-
generating µops can be in flight at once; or speculative execution may halt immediately at the first occurrence
of the faulting µop. Whilst some #GP-faulting instruction such as sysexit demonstrate an increased level of
speculation, the #UD-faulting instructions demonstrate a uniformly low level of speculation, supporting the
observation of [1] and suggesting the instruction circuit of [148] is implemented on Broadwell. However, these
results represent only 6 examples of such instructions; whilst they suggest that #UD-faulting instructions do
not routinely produce transient effects, as documented instructions these are perhaps the least likely of all
#UD-faulting instructions to demonstrate erroneous transient effects, so there may still exist undocumented
instructions with detectable transient effects.

These results also demonstrate the transient behaviour indicative of successful transient execution, which
enables it to be identifeid in future testing: significantly higher µops issued than retired (the characteristic
ratio), as all the speculative µops are mispredicted and therefore flushed without being retired, and increased
activity on ports 5 and 6. (The primary branch unit for Broadwell is on port 6, so the increased activity here
matches with many iterations of the speculative loop occurring; I am unsure why activity appears to always
be increased on port 5, as this port handles ALU and fast LEA operations rather than branching, and the
only lea instruction produced by the disassembler is within the trampoline.) Knowledge of this behaviour can
be used to determine under which conditions speculative execution can occur: for example, I replicated the
Meltdown-XD result of [1], with all instructions demonstrating the ratio of #UD instructions when the page
of the test array is not executable.

I was concerned that calling and returning from the test function normally (rather than via the trampoline)
might be producing unexpected behaviour from the specpoline, as this function call uses the indirect branch
predictor rather than the more predictable return stack buffer [126], so I attempted encoding the specpoline
directly in machine code. By adding code byte by byte into the test function as used for standard undocu-
mented instruction testing, arbitrary instructions can be tested within the specpoline at runtime without the
complication of introducing the indirect branch predictor. Inspired by Intel’s top-down analysis method [123]
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I monitored additional performance counters in an attempt to isolate the stage of the pipeline at the #UD-
faulting instructions were either no longer apparent or indistinguishable from one another. These results further
supported the observation of [1] that there are no observable transient effects after decoding: behaviour seems
to be suppressed (and uniform, suggesting a universal ’illegal’ µop or set of µopsas described in [148]) from
the instruction decoders onwards, as the IDQ.DSB_UOPS, IDQ.MITE_UOPS and IDQ.MS_UOPS (which indicate
the number of µops coming into the instruction decode queue from the three main instruction sources of the
decoded icache, legacy decode pipeline and microcode sequencer) indicate uniform values for a range of #UD
instructions (including instructions implemented in other modes, which should demonstrate distinct decoding
behaviour if they were decoded normally). There appear to be no significant stalls anywhere in the pipeline,
so the suppressed speculation is not due to exception µops overwhelming the pipeline; RESOURCE_STALLS.RS
and RESOURCE_STALLS.ROB report no stalls at the reservation station or reorder buffer, and the number of
µops not delivered by the instruction decode queue (IDQ_UOPS_NOT_DELIVERED.CORE) is the same as for nop,
although this figure is higher than that of other valid instructions, perhaps suggesting that both the #UD
instructions and nop are bypassing the execution core.

To conclude, detection of #UD instructions therefore occurs either at or before the instruction decoders
in the Broadwell pipeline, and transient behaviour from this point onwards appears to be uniform across a
range of tested #UD-faulting instructions. Hypothesis 3 is therefore almost certainly incorrect; given the
uniformity of the µops observed at each stage it seems highly improbable that any meaningful distinction
could be determined between them by observing transient execution.

49



4.4. INVESTIGATING #UD INSTRUCTIONS

Figure 4.1: Map of one-byte opcode instruction lengths found by the tunnelling algorithm on Intel Broadwell;
the labels indicate common mnemonics in each region.

Figure 4.2: Map of one-byte opcode instruction lengths found by the tunnelling algorithm on Intel Bonnell.
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Figure 4.3: Timing attack results on the three-byte encoding space on Intel Broadwell.

Figure 4.4: Timing attack results on the three-byte encoding space on Intel Bonnell.
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Chapter 5

Evaluation and Conclusion

"GCAMTDNBUJ - Garbage Collect All
Memory That Does Not Bring User Joy"

@x86instructions, Twitter

5.1 Project Outcomes
Hypothesis 1: undocumented instructions. This proved correct on the HiFive Unleashed and HiFive1,
as both exhibit undocumented instructions with the reserved encoding 100xxxxxxxxxxxxx00. These were
partially reverse-engineered on the HiFive Unleashed and demonstrated to use two entirely undocumented
instruction formats; they exhibit different behaviour on the HiFive1, but reverse-engineering on this plat-
form was unsuccessful. No new undocumented instructions were found on x86, with the focus instead on
investigating hypotheses 2 and 3 and facilitating future work on hypothesis 1 via new testing techniques and
instruction search strategies; however, the known undocumented prefetchwt1 instructions were investigated
and demonstrated to be aliases of prefetch.

Hypothesis 2: undocumented exception and decoding behaviour. Strategies were developed for inves-
tigating decoding behaviour via the tunneling algorithm, a timing attack, and the specpoline mechanism. In
particular, the first known visualisations of x86 decoding behaviour (beyond the standard opcode maps) were
presented, which provide a new method for analysis of decoding behaviour. One instruction was found to have
surprising behaviour on Intel Westmere, but unfortunately could not be investigated further due to hardware
failure. The undocumented #UD exception behaviour reported in [2] was found to have been corrected in a
microcode update, indicating that it was likely a CPU bug. The secrecy surrounding this highlights the prob-
lematic opacity of microcode updates; undocumented exception behaviour is a known cause of vulnerabilities,
and so any changes in microcode - even if to fix bugs - should not be kept secret by manufacturers.

Hypothesis 3: Transient execution of undocumented instructions. Whilst there was theoretical sup-
port for this hypothesis, experimental results with the specpoline mechanism strongly supported that it is
incorrect on Intel Broadwell: faulting speculative instructions show uniform behaviour by (at the latest) the
decoding stage. This hypothesis remains to be investigated on other speculative microarchitectures, which
may demonstrate different behaviour.

Other contributions: All four project aims were met. The experiments described above meet the project’s
third aim, whilst the code produced for the experiments on x86 and RISC-V has been released on GitHub as
v2 of the open-source OpcodeTester tool [2], meeting the project’s second aim. The release of this tool will
hopefully facilitate instruction fuzzing on other microarchitectures and future research in this area. In addition
forks of Sandsifter and NanoBench were released, adding support for disassembly with Intel XED and testing
of faulting instructions respectively. Chapter 1 provides an accessible introduction to CPU security, meeting
the project’s first aim, and Sections 5.4 and 5.5 of this chapter meet the fourth aim of the project by assessing
the scope for future work in this area and the outlook for CPU security.
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5.2 Critical Evaluation

5.3 Challenges
Variable-length encoding. As discussed in Section 4.3.1, x86’s extreme variable-length encoding presents
immense challenges for reliable instruction testing. Essentially, on x86 the 1-15 bytes tested cannot be treated
as a black-box single instruction which will either execute or fault: they may actually represent a sequence of
valid instructions which subsequently crash the program or are falsely identified as an undocumented instruc-
tion. In one sense an understanding of x86 encodings is already built into OpcodeTester with its use of Intel
XED. However, XED is not infallible and can only decode 15 bytes at a time: an ongoing issue remains that
XED may declare a 15-byte sequence invalid because the final instruction is incomplete, whilst at runtime bytes
following the test array in memory complete the instruction and the sequence therefore executes. Similarly,
the tunnelling algorithm achieves this to some extent by being guided by the decoded instruction length, but
an instruction’s length does not encode all possible information: there exist instructions of different lengths
which are functionally similar enough to treat as identical for coverage purposes, and of the same length which
are functionally distinct enough to require separate testing.

It therefore seems advisable for future work on x86 to use more architecture-specific strategies, aiming for
coverage of specific architectural features rather than random instruction generation alone (akin to Google’s
UVM instruction generation for verifying RISC-V RTL [149]). Potential options include manipulating the Mod-
R/M and SIB bytes to find undocumented aliases or variants of documented instructions or even synthesising
undocumented instructions from the formal semantics of [92] to produce encodings similar to documented
instructions. Architecture-specific strategies can still benefit however from complementary approaches such as
the timing attack and decoder mapping to avoid overlooking any undocumented instructions which consider-
ably deviate from the documented encodings.

An additional challenge of x86 is that so many of the factors in microarchitectural state (microcode,
pipeline details, etc.) are undocumented, and so it is extremely difficult to isolate the cause of suspicious or
potentially vulnerable instruction behaviour. I believe there is still considerable value in an application-level
tool, as this renders instruction testing more accessible and helps to identify instruction vulnerabilities which
are caused by interaction with the operating system (such as the MOV SS/POP SS vulnerability). However, on
microarchitectures with complex transient execution effects, such as those of x86, this must be complemented
by testing at machine-mode or lower to isolate suspicious instructions’ microarchitectural effects. The recently
partially reverse-engineered Intel VISA (Visualization of Internal Signals Architecture) debugging interface,
which is available on Skylake and newer microarchitectures and permits low-level debugging of the CPU via
USB when ’unlocked’ using a known vulnerability [150], might enable yet lower-level analysis.

Investigating two architectures. I have greatly appreciated the opportunity to learn about RISC-V and
open-source hardware, and believe that my understanding of x86’s security, its design choices, and the com-
plex technological and economic context in which it developed has greatly benefited from comparing and
contrasting it with RISC-V. After all, it is difficult to propose alternatives to poor design choices if unaware
that there are alternatives! However, in retrospect I think attempting to investigate two entire architectures
was overambitious for the time frame of this project; the workload involved was unsustainable and as a result
my experimental findings are more preliminary than I hoped. However, the project’s findings and release of
the improved OpcodeTester tool have laid groundwork for further research in this area, and I sincerely hope
that they will aid other researchers in investigating this under-researched topic.

Hardware failure. The failure of the Westmere laptop and Galileo boards was disappointing. I regret that I
was unable to conduct more thorough testing of undocumented instructions on Westmere and to fully debug
the cause of the ’HCF’ jump, as identifying the cause might have led to a useful Linux kernel or driver patch.
Given that the laptop was 9 years old and that events prior to its total failure suggested the graphics card was
failing, it seems unlikely that the hardware failure was related to the project’s instruction testing. The failure
of the Galileo boards meant that it was not possible to conduct instruction testing on either board (hence the
lack of discussion of these boards in prior sections). I was unable to communicate with the first board via
UART or RS-232, and the board was not recognised by Intel’s firmware update tool. Communication was also
impossible with a second brand-new board; following suggestions on the Intel forums I attempted a firmware
update with Intel’s tool, but this failed and bricked the board.

53



5.4. FUTURE WORK

5.3.1 Assumptions and Limitations
Open-source security. A significant assumption throughout this work has been that open-source systems are
inherently more secure than closed-source systems. This is widely believed to be the case in the open-source
community, with Linus’ law stating that "given enough eyeballs, all bugs are shallow", and the substantial
case against security by obscurity was presented in Sections 1.2.2 and 2.1. However, there are precedents of
vulnerabilities in open-source software which remained unnoticed for decades, such as the Shellshock remote
code execution vulnerability present in Bash from 1992-2014 [151]. Penetration testing and auditability of
open-source designs increase the likelihood of detecting any vulnerabilities present, but do not guarantee their
detection. Moreover, whilst open-source development adds diversity of perspective and more ’eyeballs’, its
typically highly-distributed nature, with many developers making unfocused contributions, can in itself foster
vulnerabilities [152]. Improving open-source verification tooling is therefore also crucial, as it will enable
vulnerabilities to be detected earlier in development.

No AMD microarchitectures. Due to lack of other available test platforms, both this project and my prior
research project have now investigated x86 solely on Intel microarchitectures. This is unfortunate as Intel’s
and AMD’s microarchitectures and interpretations of the informally-specified x86 ISA differ substantially. I
considered using AMD-based cloud computing instances such as AMD EPYC instances on Amazon EC2.
However, I was concerned that CPU fuzzing might violate cloud providers’ terms of service and affect the
availability of other customers’ instances on the same server in the event of a crash, and therefore decided
against such testing. As OpcodeTester has been made publicly available on GitHub, investigation of AMD
CPUs is accessible to others, and I hope that in future work I will also have the opportunity to investigate on
AMD platforms. However, until such comparative investigation has been conducted the results presented in
this project should be considered Intel-specific.

Hardware performance counters. The analysis in Section 4.4.2 is highly dependent on the reliability of
the hardware performance counters. As discussed in [153], the hardware counters on across x86 microarchi-
tectures are known to suffer from inaccuracies (particularly overcounting) and seemingly non-deterministic
behaviour, and as described in Section 2.3.3 Broadwell suffers from numerous performance counter errata.
The counts I observed may well have been inaccurate; given the proprietary nature of the microarchitectural
interactions under investigation, it is impossible to be certain. However, they certainly did not appear to be
non-deterministic: the counter values were remarkably consistent across reboots and with varying background
load, with a typical variance of just 0-2 µops per value. Furthermore, the characteristic ratios determined
from observation are tolerant to slight variance and are dependent only on the counters reporting reasonably
consistent values rather than being truly accurate. I did not apply per-process filtering to my results as rec-
ommended in [153], as the consistency of the values suggested the process was very rarely being descheduled
during the extremely brief performance monitoring period. However, repeated descheduling (perhaps due to
very high system load) could potentially lead to false positives; in developing the tool further I would seek
to prevent this. The most significant limitation of the transient execution analysis is that testing could only
be conducted on a single microarchitecture: by this point in the project the Westmere platform had failed,
whilst Bonnell is an in-order microarchitecture with no capacity for transient execution. It would certainly be
worthwhile continuing this investigation across multiple microarchitectures, as such low-level pipeline details
are likely to vary (particularly on Cascade Lake and subsequent generations, given their hardware mitigations
against certain transient execution attacks).

5.4 Future Work
5.4.1 Porting Fuzzing to Other Architectures

"Intel products are not intended for use in medical, life saving, life sustaining applications. Unless
otherwise agreed in writing by Intel, the Intel products are not designed nor intended for any
application in which the failure of the Intel product could create a situation where personal injury
or death may occur" - Intel disclaimer [154])

"Some critical medical devices/equipment still use Microsoft XP software supplied by third parties
and were affected, including for example, MRI scanners and blood test analysis devices" [37]

With the exception of the HiFive1 microcontroller, the devices under test for this project are all desktop
CPUs. Desktop PC security is undeniably important: whilst desktop CPU manufacturers wash their hands of
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responsibility for security with disclaimers that their products should not be used in safety-critical systems,
digital infrastructure is now so pervasive that desktops play a critical role in many aspects of modern life.
From controlling medical equipment (with alarmingly outdated software, as the quote above highlights) to
communicating with industrial programmable logic controllers (PLCs) and coordinating the just-in-time supply
chains which ensure shops are stocked with food and medicine, desktop CPUs are critical for keeping people
safe. However, there are also many other contexts in which CPUs are used which were not considered in this
project. Servers store vast quantities of sensitive data; x86 server CPUs can be easily tested with Opcode-
Tester, but testing Arm servers would require porting the tool. Similarly, many mobile and embedded devices
are powered by Arm CPUs, so porting the tool to this architecture seems highly worthwhile for future work.
There are a range of other ISAs including PowerPC, MIPS, and Atmel AVR, but with Arm’s dominance in this
market [50] targeting its architecture seems most worthwhile.

All CPUs typically also work in tandem with many other processors which may have undocumented be-
haviour, for example the network card, graphics card, audio card, disk controllers, and security coprocessors.
With increasing adoption of machine learning systems in safety-critical or sensitive contexts (such as au-
tonomous driving in cars and facial recognition for airport security and border control), support for fuzzing
of graphics cards and domain-specific machine learning processors is particularly crucial. Fuzzing trusted co-
processors such as Intel ME and the AMD PSP for undocumented behaviour also seems highly worthwhile,
as their comprehensive access to the main CPU makes them excellent sites for a backdoor. Finally, there are
industrial PLCs and other control systems processors used in contexts such as manufacturing and the energy
industry. These are perhaps the most security critical of all, as such systems can be extremely dangerous if
control cannot be maintained. Nuclear facilities in particular have been subject to sophisticated and persis-
tent attacks such as Stuxnet and TRITON [39] [155]. However, gaining access to such systems to conduct
testing is, understandably, challenging, and each must be evaluated within its highly specialised context, likely
precluding development of a general-purpose auditing tool.

5.4.2 Instruction Space Search Strategies
Whilst this project proposed one novel strategy for searching the instruction space, there are many others
which seem worthy of investigation. As discussed in Section 2.3, it is impossible to achieve full coverage of all
possible x86 instruction encodings, and even with the 32-bit RISC-V space a brute-force search is prohibitively
slow. This ’search’ challenge (where we are aiming to explore or cover the space, rather than search for a
specific value) is also known as state space exploration and is a problem far from unique to CPU fuzzing.
Algorithms and heuristics for the problem are broadly applicable in a range of domains, from fuzzing and
verification of systems to artificial intelligence, genetics, drug discovery, and dynamical systems in general
across physics, engineering and mathematics. This further motivates investigation of search strategies in the
context of CPU fuzzing and verification: such strategies might be generalisable to other domains, leading to
benefits far beyond improved CPU security. Evolutionary algorithms such as genetic algorithms are a common
class of techniques used for this problem in other domains [156] but have not yet been successfully applied to
instruction fuzzing (Domas began but never completed implementing a genetic approach [5]).

A crucial challenge in applying these strategies is creating a meaningful optimisation metric (to determine
the distance between states or optimality of a given state). Intuitively, for coverage purposes the distance
between two instructions would be how functionally distinct they are; this could be quantified by combining
performance counter measurements with observed register state changes. This then presents us with a classic
exploration vs. exploitation problem [157]: at what distance is an instruction similar enough to justify skipping
testing of it? Defining optimality is harder; one approach would be to seek to optimise the µops issued to
µops retired ratio measured with the specpoline mechanism across all instructions unrecognised by the dis-
assembler (see Section 4.4.2). A further promising strategy is the rapidly-exploring random tree algorithm
[158]. The algorithm uniformly samples from the search space, attempting to add a selected state to its tree
by connecting the state to the closest state already in its tree, subject to any relevant constraints for the
problem domain. This uniform sampling biases it towards large Voronoi regions, resulting in the algorithm
preferentially expanding into larger unsearched areas. It has primarily been applied so far to contexts with
complex physical dynamics, such as motion planning in robotics; CPU state is similarly complex but may not
be equally mathematically predictable, so it remains to be seen how effective the algorithm would be.
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Figure 5.1: A visualisation of the coverage produced by a rapidly-exploring random tree algorithm. The fractal
pattern is an artefact of the test data and constraints used, but recalls to mind biologically-evolved efficient
coverage strategies in nature, such as formation of neural systems. Reproduced from [159].

5.5 Outlook for CPU Security
Current context. As discussed in Chapter 1, the current technical, economic, and political context provides
a compelling case for the necessity of improved CPU security and public CPU auditing. CPU designs and
the dominant x86 ISA have grown so complex that it is impossible to comprehensively verify them, even
with state-of-the-art industry tooling. Said designs have been found to be vulnerable to an ever-growing set
of transient execution attacks and to feature other software-exploitable hardware bugs. The incumbent x86
manfacturers have a monopoly on the industry and have little economic incentive to improve security or attempt
to radically innovate on their current flawed microarchitectures. Nation-states are placing increasing focus on
cyberwarfare, beginning to invest the resources necessary to conduct large-scale hardware compromise, and we
have seen cyber attacks compromising critical national infrastructure and causing societal disruption, whilst
governmental security compromise of commodity devices for mass surveillance is ongoing. However, RISC-V
and open-source hardware design in general are gaining momentum. A return to the RISC mindset across
the industry could help mitigate the current complexity explosion, and RISC-V’s free licensing may stimulate
innovation in microarchitectural design. Manufacturers such as Western Digital appear to be embracing greater
openness in CPU design [54] thanks to RISC-V, which is a hugely beneficial trend for security. However, no
ISA can be a panacea, and the undocumented instructions found in this project suggest either inadequate
verification or deliberate concealment of undocumented behaviour by the predominant RISC-V manufacturer,
SiFive. Both alternatives are troubling and demonstrate why CPU auditing tools will remain necessary in the
future.

Security at any cost? Despite the risks posed by CPU compromise, it is important to maintain perspective
on the issue. There are substantial costs involved in improving CPU security which cannot be ignored;
computer architecture is, after all, a science of trade-offs [160]. Mitigating a CPU vulnerability involves
direct economic and organisational costs: substantial developer time is required to implement and deploy a
mitigation, and there is a resulting opportunity cost in that this time could instead be spent on vulnerabilities
more likely to affect the given organisation. Furthermore, the very same design choices and optimisations
which this project has been so critical of from a security perspective also help to improve energy efficiency and
boost performance. Improved performance is crucial to a wide range of compute-intensive scientific domains,
and security mitigations which impose substantial performance costs - such as the Spectre and Meltdown
patches [161] - therefore have knock-on effects on scientific progress. Moreover, with ’unprecedented’ systemic
transitions and "deep emission reductions in all sectors" now necessary in the next two decades to limit global
warming to 1.5°C [162], we may no longer have the luxury of debating whether a security patch is worth the
resulting energy inefficiency.

Secure by design. I discuss these trade-offs not with the aim of dismissing the value of CPU security, but
to highlight the cost of blindly continuing with the ’penetrate and patch’ mentality, with insecure products
being released without penalty and bugs being patched over only when they are publicly found to be vul-
nerable. Whilst this project has approached CPU security from an auditing perspective - and such auditing
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is likely to continue to play an important role in CPU security - it should be a last resort in our arsenal of
vulnerability detection methods. The wide-ranging costs of subsequent patching when a vulnerability is found
are not incurred if the vulnerability is detected prior to manufacture, or if better still it never makes it into
the design. The reason so many costly patches have recently been necessary is manufacturers’ failure to
create CPUs which are secure by design. Whilst we should still aim for the entirely open-source and fully
auditable systems envisioned in Section 1.2.3, this alone is insufficient: we must work towards fully verifi-
able systems, with formally specified and verified implementations at every abstraction layer [163]. Crucially,
this must include system-level verification covering the interactions between layers to detect issues such as
cross-layer software-exploitable hardware vulnerabilities, the impact of which has only recently been made
apparent [1] [164]. The ISA has a crucial role to play in this: as [165] argues, we should "rethink the ISA"
to expose relevant microarchitectural state at the ISA level, thus enabling verification of the correctness of
microarchitectural state changes and greater security guarantees. By fundamentally changing our design prac-
tices to embrace hardware-software co-design, we can bridge the divide between hardware and software that
our tower of leaky abstractions has created, and work towards CPUs - and systems - which are secure by design.
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