Undocumented CPU Behavior:
Analyzing Undocumented Opcodes on Intel x86-64

Catherine Easdon

IAIK iia Ty

Why investigate undocumented behavior?

IAIK il TU

The “golden screwdriver” approach

e Intel have confirmed they add undocumented features to general-release chips for
key customers

"As far as the etching goes, we have done different things for different
customers, and we have put different things into the silicon, such as adding
instructions or pins or signals for logic for them. The difference is that it
goes into all of the silicon for that product. And so the way that you do it

is somebody gives you a feature, and they say, 'Hey, can you get this into
the product?' You can't do something that takes up a huge amount of die, but
you can do an instruction, you can do a signal, you can do a number of
things that are logic-related." ~ Jason Waxman, Intel Cloud Infrastructure
Group

(Source: http://www.theregister.co.uk/2013/05/20/intel_chip_customization/) IAIK ﬂ U
Iraz-

http://www.theregister.co.uk/2013/05/20/intel_chip_customization/

Poor documentation

Intel has a long history of withholding information from their manuals

APPENDIX H
ADVANCED FEATURES

Some non-essential information regarding the Pentium processor are considered Intel

confidential and proprietary and have not been documented in this publication. This

information is provided in the Supplement to the Pentium® Processor Developer’s Manual
and is available with the appropriate non-disclosure agreements in place. Please contact Intel

Corporation for details.

The Supplement to the Pentium ® Processor Developer’s Manual contains Intel confidential
information on architecture extensions to the Pentium processor which are non-essential for
standard applications. This includes low-level registers that provide access to such features as
page size extensions, virtual mode extensions, testing and performance monitoring.

This information is specifically targeted at writers of the following types of software:
® Operating system kernels

® Virtual memory managers

® BIOS software

If you are writing software that does not fall into one of these categories, this information is
non-essential and all required programming details are contained in the publicly available
Pentium® Processor Developer’s Manual, three-volume set.

(Source: http://datasheets.chipdb.org/Intel/x86/Pentium/24143004.PDF)

OPCODE MAP

IAIK il TyU

http://datasheets.chipdb.org/Intel/x86/Pentium/24143004.PDF

Poor documentation

® Intel has a long history of withholding information from their manuals

Part 1. Does it make a difference pulling 16, 32 or 64 bits?
No.

On Ivy Bridge, the CPU cores pull 64 bits over the internal communication links to the DRNG,
regardless of the size of the destination register. So if you read 32 bits, it pulls 64 bits and throws
away the top half. If you read 16 bits, it pulls 64 and throws away the top 3/4.

his is not described in the instruction documentation because it may not continue to be true in
A chip might be designed which stashes and uses the unused parts of the 64 bit
word. However there isn't a significant performance imperative to do this today.

For the highest throughput, the most effective strategy is to pull from parallel threads. This is
because there is parallelism in the bus hierarchy on chip. Most of the time for the instruction is
transit time across the buses. Performing that transit in parallel is going to yield a linear increase in
throughput with the number of threads, up to the maximum of 800MBytes/s. The second thing is to
use 64-bit RdRands, because they get more data per instruction.

Part 2. What does CF=0 mean really?

It means ‘random data not available'. This is because the details of why it can't get a number are not
available to the CPU core without it going off and reading more registers, which it isn't going to do
because there is nothing it can do with the information.

If you sucked the output buffer of the DRNG dry, you would get an underflow (CF=0) but you could
expect the next RdRand to succeed, because the DRNG is fast.

If the DRNG failed (e.g. a transistor popped in the entropy source and it no longer was random) then
the online health tests would detect this and shut down the DRNG. Then all your RdRand
invocations would yield CF=0.

However on Ivy Bridge, you will not be able to underflow the buffer. The DRNG is a little faster than
the bus to which it is attached. The effect of pulling more data per unit time (with parallel threads) will
be to increase the execution time of each individual RdRand as contention on the bus causes the
instructions to have to wait in line at the DRNG's local bus. You can never pull so fast the the DRNG
will underflow. You will asymptotically reach 800 MBytes/s.

his also is not described in the documentation because it may not continue to be true in future
FEENEENWe can envisage products where the buses are faster and the cores faster and the DRNG
would be able to be underflowed. These things are not known yet, so we can't make claims about
them.

What will remain true is that the basic loop (try up to 10 times, then report a failure up the stack)
given in the software implementors guide will continue to work in future products, because we've
made the claim that it will and so we will engineer all future products to meet this.

So no, CF=0 cannot occur because "the buffers happen to be (transiently) empty when RDRAND is
invoked" on lvy Bridge, but it might occur on future silicon, so design your software to cope.

share improve this answer edited Jul 3 '13 at 18:47 answered Jan 21'13 at 17:11

‘..ﬁ Nathan 34 David Johnston
3,084 04 26 46 B2 196 02

IAIK il TyU

(Source: https://stackoverflow.com/questions/14413839/what-are-the-exhaustion-characteristics-of-rdrand-on-ivy-bridge)

https://stackoverflow.com/questions/14413839/what-are-the-exhaustion-characteristics-of-rdrand-on-ivy-bridge

Poor documentation

Even when the manuals don’t withhold information, they are often misleading or

inconsistent

Section 22.15, Intel Developer Manual Vol. 3:

There are a few reserved opcodes that provide unique behavior but do not provide capabilities that are not already

available in the main instructions defined in the Intel® 64 and |A-32 Architectures Software Developer’s Manual,

Volumes 2A, 2B, 2C & 2D.

®* F1H - INT1 has subtly different behavior from CDO1H, Interrupt with vector 01.

* D6H - When not in 64-bit mode SALC - Set AL to Cary flag. IF (CF=1), AL=FF, ELSE, AL=0 (#UD in 64-bit
mode)

* x87 Opcodes - There are a few x87 opcodes with subtly different behavior from existing x87 instructions. See
Section 22.18.9 for details.

Section 6.15 (#UD exception):

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32 architectures. These opcodes,
even though undefined, do not generate an invalid opcode exception.

IAIK

Ty

Poor documentation leads to vulnerabilities

In operating systems

O POP SS/MOV SS (May 2018)

m Developer confusion over #DB handling
m Load + execute unsigned kernel code on Windows
m Also affected: Linux, MacOS, FreeBSD...

In virtual machines / emulators

o Privilege escalation on a cloud instance!

In disassemblers

o “Anti-disassembly”

o Hide malicious code in plain sight

// trampoline

__asm__ ("\
.globl trampoline return \n\
mov $trampoline return, %rax \n\
jmp *%rax \n\

")

__asm (".byte 0x66,0xe9,0x00,0x00,0x00,0x00") ;
if (1) |
printf("malicious\n");
}
else {
asm_ _volatile ("trampoline_ return:");

p:intf?"ﬁenign\n");

}

Figure 7. A malicious program that prints “benign" when run under QEMU,
but “malicious” when run on baremetal. The assembly trampoline at the top
is copied into low memory, as a target for the mis-emulated jmp instruction,
while the jump on baremetal simply falls through to the next instruction.

Source: Breaking the x86 ISA, Christopher Domas

IAIK il TyU

https://github.com/xoreaxeaxeax/sandsifter/blob/master/references/domas_breaking_the_x86_isa_wp.pdf

Why investigate undocumented opcodes?

e Many undocumented x86 opcodes in the past
o LOADALL, SALC, INT1/ ICEBP, UDO / UD1...

IAIK T

Grazs

Why investigate undocumented opcodes?

e Many undocumented x86 opcodes in the past

e “Halt and catch fire” instructions
o e.g. FOOF C7C8 on Pentium
o Could be used for denial of service attacks

o “Killer poke”: POKE 62975, 0 (TRS-80 M100); POKE 59458,62 (Commodore PET)

No Fix Processor May Hang Under Complex Scenarios

IAIK il TyU

Why investigate undocumented opcodes?

e Many undocumented x86 opcodes in the past
e “Halt and catch fire” instructions

® Instructions which create exploitable side-channels
o CLFLUSH, PREFETCH...

IAIK il TyU

Why investigate undocumented opcodes?

Many undocumented x86 opcodes in the past
“Halt and catch fire” instructions
Instructions which create exploitable side-channels

Hidden debug mechanisms

IAIK il TyU

Why investigate undocumented opcodes?

Many undocumented x86 opcodes in the past
“Halt and catch fire” instructions

Instructions which create exploitable side-channels
Hidden debug mechanisms

Malicious microcode updates

IAIK il TyU

Why investigate undocumented opcodes?

Many undocumented x86 opcodes in the past
“Halt and catch fire” instructions

Instructions which create exploitable side-channels
Hidden debug mechanisms

Malicious microcode updates

Undocumented behavior - bugs (“errata”)

Execution of VAESENCLAST Instruction May Produce a
#NM Exception Instead of a #UD Exception

IAIK il TyU

No Fix ENCLS[EINIT] Instruction May Unexpectedly #GP No Fix

Why investigate undocumented opcodes?

Many undocumented x86 opcodes in the past
“Halt and catch fire” instructions

Instructions which create exploitable side-channels
Hidden debug mechanisms

Malicious microcode updates

Undocumented behavior - bugs (“errata”)

Capabilities of ultra-privileged modes (Intel ME, SMM...)

o Security by obscurity is not enough

IAIK il TyU

How can we find undocumented opcodes?

IAIK il TU

How many opcodes are documented?

No-one knows!

1569 XED iclasses (*mnemonics)

But >30 different encodings for MOV alone...

6290 iforms (e.g. ADC_GPRv_IMMb)

Iforms still don’t account for all variations, e.g. some prefixes

IAIK il TyU

The instruction search space

I"ﬁégiﬁg" Opcode ModR/M SiB Displacement Immediate
Prefixes of 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
1 byte each opcode (if required) (if required) displacement data of
of1,2,0or4 1,2, 0r4

(optional)1' 2 /

32 0

7 65

bytes or none

32

0

Reg/

Mod Opcode

Index

Base

bytes or none?

Opcode !=instruction, but max instruction length: 15 bytes

2715*8 possibilities (~¥1.33 x 1036)=1,329,227,995,784,915,872,903,807,060,280,344,576

IAIK il TyU

The instruction search space

Inpsrtéﬂt):(ggn Opcode ModR/M SIB Displacement Immediate
Prefixes of 1-, 2-, or 3-byte 1 byte 1 byte Address Immediate
1 byte each opcode if ired) (if required) displacement data of
(optional)'- 2 (o) of 1,2, 0r4 1,2, 0r4

7

65 32 0 7 65

bytes or none

32

0

Reg/

Mod Opcode

R/M

Scale

Index

Base

bytes or none?

* If we test 1 billion instructions a second...it’ll only take us 4.21 x 10*° years of 24/7/365
testing (that’s ~98x the age of the universe)

* And there’ll be crashes + processor failures to deal with. Any volunteers?

® So a brute-force search for undocumented (or documented!) instructions is infeasible

IAIK il TyU

Approach 1: manual targeting

e Requires a deep understanding of the ISA
e Lots of time needed (and there’ll always be just one more opcode to
investigate...)

e Example: Corkami Standard Test by Ange Albertini (for Windows)
o Aimed at identifying disassembler / OS flaws
o Exploring misunderstood/undocumented behavior

https://code.google.com/archive/p/corkami/wikis/StandardTest.wiki

https://www.youtube.com/watch?v=MJvsshovITE (Talk: ‘Such a weird processor - messing with x86 opcodes’)

IAIK il TyU

https://code.google.com/archive/p/corkami/wikis/StandardTest.wiki
https://www.youtube.com/watch?v=MJvsshovITE

Approach 2: opcode search

® Just search within 3-byte opcode range
® 2 A (3*8)=16,777,216. Feasible for brute search

® BUT extremely buggy when executing (stack smashing, chains of seg faults...most likely
undocumented jumps!)

® Seg faults are much harder to handle than illegal opcode exceptions

Undocumented, Broadwell long 64 (9%)
Undocumented, other arches long 64 (14%)
Undocumented, Broadwell all modes (0.12%)
Completely undocumented, all arches all modes (12%)
Documented, Broadwell long 64 (65%)

IAIK il TyU

Approach 2: opcode search

120000 A

100000 -

80000 -

60000 -

Number of undocumented opcodes

77 88 bb c dd ee
Opcode first byte (hex)

IAIK il TyU

Approach 3: tunneling

0000 ® Previous research in this area by Christopher

0001 Domas - created Sandsifter tool
0002
0003
000400 ® Depth-first search: execute instruction, observe its
000401 length, increment last byte, repeat...

000402 m [f length change - start incrementing new

000403 last byte
000404 m |If FF, set last byte to 00, start

00040500000000 incrementing second to last byte
00040500000001 ® |nstruction length determined via page faults (where
00040500000002 does the CPU stop decoding?)

00040500000003
00040500000004

® Tunneling algorithm

https://github.com/xoreaxeaxeax/sandsifter

IAIK T

Grazm

https://github.com/xoreaxeaxeax/sandsifter

Approach 3: tunneling

0000 ® Advantages:
0001 ® Reduces search space to ~1,000,000,000 instructions

8885 ® Much more stable (as it is guided by the CPU decoder)

000400 ® Flaws:

000401 ® Reduces search space to ~1,000,000,000 instructions!

000402 Assumes a length change is the only “interesting”
000403 change

000404

00040500000000
00040500000001
00040500000002
00040500000003
00040500000004

® Assumes the CPU will stop decoding after one
instruction...it doesn’t

® 0000 isn’t padding - it can be decoded as an ADD.
Note: 00 isn’t valid.

IAIK T

Grazm

https://github.com/xoreaxeaxeax/sandsifter

Approach 3: tunneling

0000
0001
0002
0003
000400
000401
000402

000403

000404

00040500000000
00040500000001
00040500000002
00040500000003
00040500000004

Sandsifter is currently the most stable
automated approach for detecting

undocumented instructions
o Note: by default Sandsifter also searches for
disassembler bugs. Run with --unk flag only (not
--dis or --len).
But Sandsifter has problems:
o Lots of false positives - many valid but unusual
instructions unknown to Capstone disassembler
o Assumes all instructions which throw SIG_ILL are
invalid and can never execute (not true)

IAIK T

Grazm

Approach 3: tunneling

“If a REX prefix is used when it has no
ignored.”

cat@gnuCat:~/Documents/master-project-backup/opcodeTester/xed/obj/examples$.

0000
[XED CLIENT ERROR] test string was too long

cat@gnuCat:~/Documents/master-project-backup/opcodeTester/xed/obj/examples$.

440F1FFFO0000000000000000000

ICLASS: NOP CATEGORY: WIDENOP EXTENSION: BASE IFORM: NOP_GPRv_GPRvV_OF1F
SHORT: nop edi, risd

00000000000000000000

ICLASS: ADD CATEGORY: BINARY EXTENSION: IFORM: ADD_MEMb_GPR8 ISA_

SHORT: add byte ptr [rax], al
0000000000000000

ICLASS: ADD CATEGORY: BINARY EXTENSION: : ADD_MEMb_GPR8 ISA_
SHORT: add byte ptr [rax], al
000000000000

ICLASS: ADD CATEGORY: BINARY EXTENSION: : ADD_MEMb_GPR8 ISA_

SHORT: add byte ptr [rax], al
00000000

ICLASS: ADD CATEGORY: BINARY EXTENSION: : ADD_MEMb_GPR8 ISA_

SHORT: add byte ptr [rax], al
0000

ICLASS: ADD CATEGORY: BINARY EXTENSION: : ADD_MEMb_GPR8 ISA_

SHORT: add byte ptr [rax], al

meaning, it is

/xed -64 -d 440f1fff0EOOOOOOOOOOOOOCO000

/xed -64 -d 440f1fff0EEOOOEOOOOOOOOCLOOO

ISA_SET: FAT_NOP
SET: 186

SET:

SET:

SET:

SET:

IAIK

Ty

How can we execute an undocumented
opcode?

IAIK il TU

Execution in ring 3 (user mode)

e Unsigned char array of hex
instruction bytes + function
prologue and epilogue

e mprotect to make page containing

array executable
o Must align to start of page boundary
o Assumes array fits in one page

e Create a function pointer to the

array and call it
e Need a signal handler if testing
undocumented instructions!

IAIK T

Grazs

Execution in ring O (kernel driver)

e Similar to user mode using
kernel functions

15, GFP KERNEL, PAGE KERNEL EXEC);

® Exception handling is the
hardest part

o We’re not supposed to throw
exceptions in the kernel, but
most undocumented
instructions do fault

o Die notifiers are the kernel

equivalent of signal handlers

IAIK T

Grazs

Handling exceptions in the kernel driver

static void do_error_trap(struct pt_regs *regs, long error_code, char *str,

e Kernel source digging: do_error_trap calls do_trap_no_signal istoned tong Lrapic. trt SIS

which calls die. End result: kernel oops and our user process gets {
killed

Solution: use a die notifier to return NOTIFY_STOP

But this alone will hang the system!

siginfo_t info;

RCU_LOCKDEP_WARN(! rcu_is_watching(), "entry code didn't wake RCU");

* WARN*()s end up here; fix them up before we call the

o Need to re-enable interrupts on this core * notifier chain.
o Need to move the instruction pointer past the faulting (¢ (luser_node(regs) & Fixup_bug(regs, trapnr))
instruction: (instruction length - 2) if length > 2 i
e Alternatives: Systemtap, modify IDT if (mﬁfy_die(p:ﬁ};::p;;%:;,{regs, e, e R i

e Important to minimise messages in the kernel log ::“:;::f::;;‘:—e's‘::;:(r:ﬂi);regs i

fill_trap_info(regs, signr, trapnr, &info));

Source: https://elixir.bootlin.com/linux/latest/source/arch/x86/kernel/traps.c
See also:

https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry _64.S
https://Oxax.gitbooks.io/linux-insides/Interrupts/linux-interrupts-5.html

IAIK il TyU

https://elixir.bootlin.com/linux/latest/source/arch/x86/kernel/traps.c
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S
https://0xax.gitbooks.io/linux-insides/Interrupts/linux-interrupts-5.html

How can we determine what an
undocumented opcode does?

IAIK il TU

Monitoring opcode execution

e Clock cycles
o Notoriously difficult to measure accurately
o Kernel RDTSCP vs. counters
o More realistic: distinguish between NOPs, simple instructions, and complex instructions

e Performance counters

o Uops per execution port
o Floating point operations
o Memory operations

0 Lots more!

IAIK il TyU

Execution port profiling

e Information sources:
o Intel Optimization Reference
Manual

o Agner Fog’s optimization manuals
(3 and 4)

® Microarchitecture-specific

® Needs runtime profiling (all
counters have overhead)

® Assume we can saturate all
relevant ports for an instruction

4.{ 32K L1 Instruction Cache }—V Pre-Decode }—7 nstruction Queue

MSROM ’—‘

? Decoder
] —} L, ea
e }—\—> Uop Cache (DSB)
Load Buffers, Store
Buffers, Reorder Buffers | Allocate/Rename/Retire/
| MoveElimination/Zeroldiom
[Schedu 1
’ Port 0 | ’ Port 1] l Port 5 | l Port 6 I Port 4] Port Port7 ‘

!

ALU,
SHFT,
VECLOG,

FP mul,
FMA,
DIV,
STTNI,
Branch2

VEC SHFT,

!

AL,

[ALU,
Fast LEA, | FastLEA,

2 Port3
ALU, Shft LD/STA LD/STA STA
Primary
VECALU, VEC ALU, Bra "_lch
VEC LOG, VEC LOG,
FP mul, VEC SHUF,
FMA,
FP add,
Slow Int

Memory Control

_{

/%/ ’ 32K L1 Data Cache l
Line Fill Buffers |
256K L2 Cache (Unified) }4—,—> !

Figure 2-4. CPU Core Pipeline Functionality of the Haswell Microarchitecture

IAIK il TyU

Execution port profiling

. Co m b i n e p 0 rt u 0 p CO u nte rS 4.{ 32K L1 Instruction Cache }—V Pre-Decode }—7 nstruction Queue

F MSROM A’—‘ o
? |

with other counters (memory, , I

i Allocate/Rename/Retire/
| MoveElimination/Zeroldiom

Load Buffers, Store
Buffers, Reorder Buffers

FPU, branches...) to make a

best guess at functionality r

’ Port 0 | ’ Port1] l Port 5 | l Port 6 I Port 4] Port 2 Port3 ' Port7 ‘
e Surprisingly effective for e o I
identifying broad categories e | e | AL | Ll | 1 | I I

FP mul,

(branch, load/store address, || L

%U"e e :/ ’ 32K L1 Data Cache l
® Program must be locked to a | ewacooma o] :

Si n g I e core (ta S kS et -C O) Figure 2-4. CPU Core Pipeline Functionality of the Haswell Microarchitecture

IAIK il TyU

Memory Control

division...)

Can we learn anything about faulting instructions?

Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description
Indicates that the processor did one of the following things:
* Attempted to execute an invalid or reserved opcode.

* Attempted to execute an instruction with an operand type that is invalid for its accompanying opcode; for
example, the source operand for a LES instruction is not a memory location.

* Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or IA-32 processor that does not
support the MMX technology or SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate support for these extensions.

¢ Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD instruction (with the exception of
the MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions)
when the EM flag in control register CRO is set (1).

* Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bitin control register CR4 is clear
(0). Note this does not include the following SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI,
PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, PAVGW, PEXTRW,
PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ,
PALIGNR, PABSB, PABSD, PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW,
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

* Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or IA-32 processor that caused a
SIMD floating-point exception when the OSXMMEXCPT bit in control register CR4 is clear (0).

®* Executed a UD2 instruction. Note that even though it is the execution of the UD2 instruction that causes the
invalid opcode exception, the saved instruction pointer will still points at the UD2 instruction.

* Detected a LOCK prefix that precedes an instruction that may not be locked or one that may be locked but the
destination operand is not a memory location.

¢ Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL instruction while in real-
address or virtual-8086 mode.

* Attempted to execute the RSM instruction when not in SMM mode.
(Source: Intel Developer Manual Vol. 3, section 6.15) IAI K ! U

razm

Can we learn anything about faulting instructions?

6.5 EXCEPTION CLASSIFICATIONS

Exceptions are classified as faults, traps, or aborts depending on the way they are reported and whether the
instruction that caused the exception can be restarted without loss of program or task continuity.

* Faults — A fault is an exception that can generally be corrected and that, once corrected, allows the program
to be restarted with no loss of continuity. When a fault is reported, the processor restores the machine state to
the state prior to the beginning of execution of the faulting instruction. The return address (saved contents of
the CS and EIP registers) for the fault handler points to the faulting instruction, rather than to the instruction
following the faulting instruction.

* Traps — Atrapis an exception that is reported immediately following the execution of the trapping instruction.
Traps allow execution of a program or task to be continued without loss of program continuity. The return
address for the trap handler points to the instruction to be executed after the trapping instruction.

* Aborts — An abort is an exception that does not always report the precise location of the instruction causing

the exception and does not allow a restart of the program or task that caused the exception. Aborts are used to
report severe errors, such as hardware errors and inconsistent or illegal values in system tables.

NOTE

One exception subset normally reported as a fault is not restartable. Such exceptions result in loss
of some processor state. For example, executing a POPAD instruction where the stack frame
crosses over the end of the stack segment causes a fault to be reported. In this situation, the
exception handler sees that the instruction pointer (CS:EIP) has been restored as if the POPAD
instruction had not been executed. However, internal processor state (the general-purpose
registers) will have been modified. Such cases are considered programming emrors. An application
causing this class of exceptions should be terminated by the operating system.

So...we can learn nothing, as the machine state is entirely restored to the pre-execution
state? What about that subset of exceptions which do result in loss of execution state?

IAIK il TyU

Can we learn anything about faulting instructions?

9 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes
- Invalid Opcode
- Coprocessor Not Available

10 (Lowest) | Faults on Executing an Instruction
- Overflow
- Bound error
- Invalid TSS
- Segment Not Present
- Stack fault
- General Protection
- Data Page Fault
- Alignment Check
- xB7 FPU Floating-point exception
- SIMD floating-point exception
- Virtualization exception

Source: Table 6-2 ‘Priority among Simultaneous Exceptions and Interrupts’, Intel Developer Manual Vol. 3

Wait...if #UD is a fault from decoding the next instruction, does the instruction even

execute at all?

IAIK il TyU

Can we learn anything about faulting instructions?

In Intel 64 and IA-32 processors that implement out-of-order execution microarchitectures, this exception is not
generated until an attempt is made to retire the result of executing an invalid instruction; that is, decoding and
speculatively attempting to execute an invalid opcode does not generate this exception. Likewise, in the Pentium
processor and earlier IA-32 processors, this exception is not generated as the result of prefetching and preliminary
decoding of an invalid instruction. (See Section 6.5, “"Exception Classifications,” for general rules for taking of inter-
rupts and exceptions.)

(Source: Intel Developer Manual Vol. 3, section 6.15)

Apparently, yes it can be speculatively executed.

Did someone say Spectre?...We can also target it with performance counters!

IAIK il TyU

Do #UD instructions leave microarchitectural traces behind?

Can we defend against unknown
undocumented behavior?

IAIK il TU

Defending random.c from RDRAND

random: add new get_random_bytes_arch() function

Create a new function, get random bytes arch() which will use the
architecture-specific hardware random number generator if it is
present. Change get random bytes() to not use the HW RNG, even if it
is avaiable.

The reason for this is that the hw random number generator is fast (if
it is present), but it requires that we trust the hardware
manufacturer to have not put in a back door. (For example, an
increasing counter encrypted by an AES key known to the NSA.)

It's unlikely that Intel (for example) was paid off by the US
Government to do this, but it's impossible for them to prove otherwise
--- especially since Bull Mountain is documented to use AES as a
whitener. Hence, the output of an evil, trojan-horse version of
RDRAND is statistically indistinguishable from an RDRAND implemented
to the specifications claimed by Intel. Short of using a tunnelling
electronic microscope to reverse engineer an Ivy Bridge chip and
disassembling and analyzing the CPU microcode, there's no way for us
to tell for sure.

IAIK il TyU

Defending random.c from RDRAND

random: mix in architectural randomness in
* If we have a architectural hardware random numbe
extract_buf() [July 2012] 1 a architectural hardware random number

* generator, mix that in, too.

for (1 = 0; 1 < LONGS(EXTRACT_SIZE); i++) {
unsigned long v;
if (!arch_get_random_long(&av))
break;
hash.1[1] "= v;

“Mix in any architectural randomness in extract_buf()
instead of xfer_secondary_buf(). This allows us to mix in
more architectural randomness, and it also makes
xfer_secondary_buf() faster, moving a tiny bit of additional

CPU overhead to process which is extracting the }
randomness.

memcpy(out, &hash, EXTRACT_SIZE);
[Commit description modified by tytso to remove an memset(&hash, 0, sizeof(hash));
extended advertisement for the RDRAND instruction.] }

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>

Acked-by: Ingo Molnar <mingo@kernel.org> ,
Cc: DJ Johnston <dj.johnston@intel.com> What's wrong here?

Signed-off-by: Theod ! it.ed .. .

e e Shyso@miedt e HWRNG output added after all mixing - so it
controls the final “random” output

® Imagine HWRNG is compromised via malicious

For full code, see:

httle://github.com/torvalds/linux/blob/master/ microcode update
drivers/char/random.c . .
https://elixir.bootlin.com/linux/v3.0.41/ e Microcode has access to our hash.l[i] value

source/drivers/char/random.c

® |t can output a value v which XORs to 0
IAIK il Ty

razm

https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/source/drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/source/drivers/char/random.c

Defending random.c from RDRAND

random: mix in architectural randomness in
extract_buf() [July 2012]

“Mix in any architectural randomness in extract_buf()
instead of xfer_secondary_buf(). This allows us to mix in
more architectural randomness, and it also makes
xfer_secondary_buf() faster, moving a tiny bit of additional
CPU overhead to process which is extracting the
randomness.

[Commit description modified by tytso to remove an
extended advertisement for the RDRAND instruction.]

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>

Cc: DJ Johnston <dj.johnston@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>

Cc: stable@vger.kernel.org”

For full code, see:
https://github.com/torvalds/linux/blob/master/
drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/
source/drivers/char/random.c

random: mix in architectural randomness earlier
in extract_buf() [September 2013]

“Previously if CPU chip had a built-in random number generator
(i.e., RDRAND on newer x86 chips), we mixed it in at the very
end of extract_buf() using an XOR operation.

We now mix it in right after the calculate a hash across the
entire pool. This has the advantage that any contribution of
entropy from the CPU's HWRNG will get mixed back into the
pool. In addition, it means that if the HWRNG has any defects
(either accidentally or maliciously introduced), this will be
mitigated via the non-linear transform of the SHA-1 hash
function before we hand out generated

output.

Signed-off-by: "Theodore Ts'o

<tytso@mit.edu>”

* If we have a architectural hardware random number
* generator, mix that in, too.
*/
for (i = @; i < LONGS(20); i++) {
unsigned long v;
if (larch_get_random_long(&v))
break;

hash.1[i] %= v;

* We mix the hash back into the pool to prevent backtracking

* attacks (where the attacker knows the state of the pool

random: use the architectural HWRNG for the
SHA's IV in extract_buf() [December 2013]

“To help assuage the fears of those who think the NSA can
introduce a massive hack into the instruction decode and out
of order execution engine in the CPU without hundreds of Intel
engineers knowing about it (only one of which woud need to
have the conscience and courage of

Edward Snowden to spill the beans to the public), use the
HWRNG to initialize the SHA starting value, instead of xor'ing it
in afterwards.

Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>”

e random number

ector

sha_init(hash.w);

for (i1 = 0; 1 < LONGS(20); i++) {
unsigned long v;
if ('arch_get_random_long(&v))

IAIK il TyU

hash.1[1] = v;

https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/source/drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/source/drivers/char/random.c

Opcode Tester

Opcode Tester

e Concept: automate CPU analysis as far as possible
e Execute and analyze instructions in ring 3 and ring O
o Command-line tool

Input: Sandsifter log file (or similarly formatted instruction list)
Filter Sandsifter false positives with XED
Clock cycles, functionality analysis
Stable ring 0 (kernel driver) #UD handling

m Testinring O to see if an instruction is valid but privileged

O O O O

m Execute 500,000+ illegal instructions in the kernel...And nothing explodes!
m Segfaults are harder to handle - but only crash the program, not the OS
® Lots more potential for development

https://github.com/cattius/opcodetester

IAIK il TyU

https://github.com/cattius/opcodetester

Where next?

Unanswered questions...

e What might we find looking for undocumented instructions in:
o SGX

SMM

Other machine modes

ME (separate coprocessor)

O O O O

Non-Intel processors

IAIK il TyU

Unanswered questions...

e Why do instructions which normally throw #UD sometimes throw #GP
instead? Is this a hardware bug, and could it be exploited?

IAIK il TyU

Unanswered questions...

e How can we feasibly test for undocumented behavior which depends on
‘password’ register values?

EDI=9C5A203A

activates 4 debug MSRs on AMD K7

IAIK il TyU

Unanswered questions...

® Recall: do speculatively executed #UD instructions leave
microarchitectural traces?

In Intel 64 and IA-32 processors that implement out-of-order execution microarchitectures, this exception is not
generated until an attempt is made to retire the result of executing an invalid instruction; that is, decoding and
speculatively attempting to execute an invalid opcode does not generate this exception. Likewise, in the Pentium
processor and earlier IA-32 processors, this exception is not generated as the result of prefetching and preliminary
decoding of an invalid instruction. (See Section 6.5, "Exception Classifications,” for general rules for taking of inter-
rupts and exceptions.)

(Source: Intel Developer Manual Vol. 3, section 6.15)

IAIK il TyU

Thank you for listening!
Any gquestions?

Bonus: incrementing IP - when does an exception occur?

User program:
o LEA: Copy RIP + 0 offset to RDX
o MOV: Set EAXto 0

o CALL: Push return address (current RIP
value) onto stack and jump to absolute

address (value of RDX)

o CALL ES8 rel64 calls near with displacement

relative to next instruction (so call next
instruction, basically)
Kernel program:

o Mov RIP to RDX and then CALL the line

itself
o CALL FF calls near absolute indirect
address given in register

%edx ,%edi
%eax,%esi
0x0(%rip) ,%rax
%edi,ox0(%rip)
%esi,ox0(%rip)

d4 <opcodeTesterKernel write+0x54>
da <opcodeTesterKernel_write+0x5a>
e0 <opcodeTesterKernel_write+0x60>

e5 <opcodeTesterKernel_write+0x65>

0x0(%rip),%rax

ec <opcodeTesterKernel_write+0x6c>

f1 <opcodeTesterKernel_write+0x71>

0x0(%rip),%rax

f8 <opcodeTesterKernel_write+0x78>

fd <opcodeTesterKernel write+0x7d>

0x0(%rip),%rax

109 <opcodeTesterKernel write+0x89>

((void(*)())execInstruction)();

1d82:
1d89:
1dge:

48 8d 15 00 00 00 00
b8 006 00 00 00
ff d2

((void(*)())execInstruction)();

1d9e:
1d97:
1d9c:

48 8d 15 00 00 00 00
b8 00 00 00 00
ff d2

((void(*)())execInstruction)();

1d9e:
1das:
1daa:

48 8d 15 00 00 00 00
b8 006 00 00 00
ff d2

((void(*)())execInstruction)();

1dac:
1db3:
1dbs8:

48 8d 15 00 00 00 00
b8 00 00 00 00
ff d2

0x0(%rip),%rdx
$0x0,%eax
*%rdx

0x0(%rip),%rdx
$0x0,%eax
*%rdx

0x0(%rip),%rdx
$0x0,%eax
*%rdx

0x0(%rip),%rdx
$0x0,%eax
*%rdx

104 <opcodeTesterKernel write+0x84>

IAIK T

Grazs

