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Why investigate undocumented behavior?



● Intel have confirmed they add undocumented features to general-release chips for 

key customers

"As far as the etching goes, we have done different things for different 
customers, and we have put different things into the silicon, such as adding 
instructions or pins or signals for logic for them. The difference is that it 
goes into all of the silicon for that product. And so the way that you do it 
is somebody gives you a feature, and they say, 'Hey, can you get this into 

the product?' You can't do something that takes up a huge amount of die, but 
you can do an instruction, you can do a signal, you can do a number of 

things that are logic-related." ~ Jason Waxman, Intel Cloud Infrastructure 
Group

(Source: http://www.theregister.co.uk/2013/05/20/intel_chip_customization/ )

The “golden screwdriver” approach

http://www.theregister.co.uk/2013/05/20/intel_chip_customization/


● Intel has a long history of withholding information from their manuals

Poor documentation

(Source: http://datasheets.chipdb.org/Intel/x86/Pentium/24143004.PDF)

http://datasheets.chipdb.org/Intel/x86/Pentium/24143004.PDF


● Intel has a long history of withholding information from their manuals

Poor documentation

(Source: https://stackoverflow.com/questions/14413839/what-are-the-exhaustion-characteristics-of-rdrand-on-ivy-bridge) 

https://stackoverflow.com/questions/14413839/what-are-the-exhaustion-characteristics-of-rdrand-on-ivy-bridge


● Even when the manuals don’t withhold information, they are often misleading or 

inconsistent

Section 22.15, Intel Developer Manual Vol. 3:

Section 6.15 (#UD exception):

Poor documentation



Poor documentation leads to vulnerabilities

● In operating systems

○ POP SS/MOV SS (May 2018)

■ Developer confusion over #DB handling

■ Load + execute unsigned kernel code on Windows

■ Also affected: Linux, MacOS, FreeBSD...

● In virtual machines / emulators
○ Privilege escalation on a cloud instance!

● In disassemblers 
○ “Anti-disassembly”

○ Hide malicious code in plain sight

Source: Breaking the x86 ISA, Christopher Domas

https://github.com/xoreaxeaxeax/sandsifter/blob/master/references/domas_breaking_the_x86_isa_wp.pdf


● Many undocumented x86 opcodes in the past
○ LOADALL, SALC, INT1 / ICEBP, UDO / UD1…

Why investigate undocumented opcodes?



● Many undocumented x86 opcodes in the past

● “Halt and catch fire” instructions
○ e.g. F00F C7C8 on Pentium

○ Could be used for denial of service attacks

○ “Killer poke”: POKE 62975, 0 (TRS-80 M100); POKE 59458,62 (Commodore PET)

Why investigate undocumented opcodes?



● Many undocumented x86 opcodes in the past

● “Halt and catch fire” instructions

● Instructions which create exploitable side-channels
○ CLFLUSH, PREFETCH…

Why investigate undocumented opcodes?
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● Many undocumented x86 opcodes in the past

● “Halt and catch fire” instructions

● Instructions which create exploitable side-channels

● Hidden debug mechanisms

● Malicious microcode updates

● Undocumented behavior - bugs (“errata”)

● Capabilities of ultra-privileged modes (Intel ME, SMM…)
○ Security by obscurity is not enough

Why investigate undocumented opcodes?



How can we find undocumented opcodes?



● No-one knows!

● 1569 XED iclasses (~mnemonics)

● But >30 different encodings for MOV alone…
● 6290 iforms (e.g. ADC_GPRv_IMMb)

● Iforms still don’t account for all variations, e.g. some prefixes

How many opcodes are documented?



Opcode != instruction, but max instruction length: 15 bytes

2^15*8 possibilities (~1.33 x 1036)= 1,329,227,995,784,915,872,903,807,060,280,344,576

The instruction search space



• If we test 1 billion instructions a second...it’ll only take us 4.21 x 1019 years of 24/7/365 
testing (that’s ~98x the age of the universe)

• And there’ll be crashes + processor failures to deal with. Any volunteers?

• So a brute-force search for undocumented (or documented!) instructions is infeasible

The instruction search space



Approach 1: manual targeting

● Requires a deep understanding of the ISA
● Lots of time needed (and there’ll always be just one more opcode to 

investigate…)
● Example: Corkami Standard Test by Ange Albertini (for Windows)

○ Aimed at identifying disassembler / OS flaws
○ Exploring misunderstood/undocumented behavior

https://code.google.com/archive/p/corkami/wikis/StandardTest.wiki 

https://www.youtube.com/watch?v=MJvsshovITE (Talk: ‘Such a weird processor - messing with x86 opcodes’)

https://code.google.com/archive/p/corkami/wikis/StandardTest.wiki
https://www.youtube.com/watch?v=MJvsshovITE


Approach 2: opcode search

• Just search within 3-byte opcode range
• 2 ^ (3*8) = 16,777,216.  Feasible for brute search

• BUT extremely buggy when executing (stack smashing, chains of seg faults…most likely 
undocumented jumps!)

• Seg faults are much harder to handle than illegal opcode exceptions



Approach 2: opcode search



Approach 3: tunneling

• Previous research in this area by Christopher 
Domas - created Sandsifter tool

• Tunneling algorithm
• Depth-first search: execute instruction, observe its 

length, increment last byte, repeat…
■ If length change - start incrementing new 

last byte
■ If FF, set last byte to 00, start 

incrementing second to last byte

• Instruction length determined via page faults (where 
does the CPU stop decoding?)

https://github.com/xoreaxeaxeax/sandsifter 

https://github.com/xoreaxeaxeax/sandsifter


Approach 3: tunneling

• Advantages:
• Reduces search space to ~1,000,000,000  instructions

• Much more stable (as it is guided by the CPU decoder) 

• Flaws:
• Reduces search space to ~1,000,000,000  instructions! 

Assumes a length change is the only “interesting” 
change

• Assumes the CPU will stop decoding after one 
instruction...it doesn’t

• 0000 isn’t padding - it can be decoded as an ADD. 
Note: 00 isn’t valid.

https://github.com/xoreaxeaxeax/sandsifter 

https://github.com/xoreaxeaxeax/sandsifter


Approach 3: tunneling

● Sandsifter is currently the most stable 
automated approach for detecting 
undocumented instructions

○ Note: by default Sandsifter also searches for 
disassembler bugs. Run with --unk flag only (not 
--dis or --len).

● But Sandsifter has problems:
○ Lots of false positives - many valid but unusual 

instructions unknown to Capstone disassembler
○ Assumes all instructions which throw SIG_ILL are 

invalid and can never execute (not true)



Approach 3: tunneling
“If a REX prefix is used when it has no meaning, it is 

ignored.”



How can we execute an undocumented 
opcode?



Execution in ring 3 (user mode)

● Unsigned char array of hex 

instruction bytes + function 

prologue and epilogue

● mprotect to make page containing 

array executable
○ Must align to start of page boundary

○ Assumes array fits in one page

● Create a function pointer to the 

array and call it

● Need a signal handler if testing 

undocumented instructions!



Execution in ring 0 (kernel driver)

● Similar to user mode using 

kernel functions

● Exception handling is the 

hardest part 
○ We’re not supposed to throw 

exceptions in the kernel, but 

most undocumented 

instructions do fault

○ Die notifiers are the kernel 

equivalent of signal handlers



Handling exceptions in the kernel driver

● Kernel source digging: do_error_trap calls do_trap_no_signal 

which calls die. End result: kernel oops and our user process gets 

killed

● Solution: use a die notifier to return NOTIFY_STOP 

● But this alone will hang the system!

○ Need to re-enable interrupts on this core

○ Need to move the instruction pointer past the faulting 

instruction:  (instruction length - 2) if length > 2

● Alternatives: Systemtap, modify IDT

● Important to minimise messages in the kernel log

Source: https://elixir.bootlin.com/linux/latest/source/arch/x86/kernel/traps.c
See also:
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S 
https://0xax.gitbooks.io/linux-insides/Interrupts/linux-interrupts-5.html 

https://elixir.bootlin.com/linux/latest/source/arch/x86/kernel/traps.c
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S
https://0xax.gitbooks.io/linux-insides/Interrupts/linux-interrupts-5.html


How can we determine what an 
undocumented opcode does?



Monitoring opcode execution 

● Clock cycles
○ Notoriously difficult to measure accurately

○ Kernel RDTSCP vs. counters

○ More realistic: distinguish between NOPs, simple instructions, and complex instructions

● Performance counters
○ Uops per execution port

○ Floating point operations

○ Memory operations

○ Lots more!



Execution port profiling

● Information sources:
○ Intel Optimization Reference 

Manual

○ Agner Fog’s optimization manuals 

(3 and 4)

● Microarchitecture-specific

● Needs runtime profiling (all 

counters have overhead)

● Assume we can saturate all 

relevant ports for an instruction



Execution port profiling

● Combine port uop counters 

with other counters (memory, 

FPU, branches…) to make a 

best guess at functionality

● Surprisingly effective for 

identifying broad categories 

(branch, load/store address, 

division…)

● Program must be locked to a 

single core (taskset -c 0)



Can we learn anything about faulting instructions?

(Source: Intel Developer Manual Vol. 3, section 6.15)



Can we learn anything about faulting instructions?

So...we can learn nothing, as the machine state is entirely restored to the pre-execution 

state? What about that subset of exceptions which do result in loss of execution state?



Can we learn anything about faulting instructions?

Source: Table 6-2 ‘Priority among Simultaneous Exceptions and Interrupts’, Intel Developer Manual Vol. 3

Wait...if #UD is a fault from decoding the next instruction, does the instruction even 

execute at all?



Can we learn anything about faulting instructions?

(Source: Intel Developer Manual Vol. 3, section 6.15)

Apparently, yes it can be speculatively executed. 

Did someone say Spectre?...We can also target it with performance counters!

Do #UD instructions leave microarchitectural traces behind?



Can we defend against unknown 
undocumented behavior?



Defending random.c from RDRAND



random: mix in architectural randomness in 
extract_buf() [July 2012]

“Mix in any architectural randomness in extract_buf() 
instead of xfer_secondary_buf().  This allows us to mix in 
more architectural randomness, and it also makes 
xfer_secondary_buf() faster, moving a tiny bit of additional 
CPU overhead to process which is extracting the 
randomness.

[ Commit description modified by tytso to remove an 
extended advertisement for the RDRAND instruction. ]

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: DJ Johnston <dj.johnston@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org”

What’s wrong here?
● HWRNG output added after all mixing - so it 

controls the final “random” output
● Imagine HWRNG is compromised via malicious 

microcode update
● Microcode has access to our hash.l[i] value
● It can output a value v which XORs to 0

Defending random.c from RDRAND

For full code, see: 
https://github.com/torvalds/linux/blob/master/
drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/
source/drivers/char/random.c 

https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/source/drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/source/drivers/char/random.c


Defending random.c from RDRAND
random: mix in architectural randomness in 
extract_buf() [July 2012]

“Mix in any architectural randomness in extract_buf() 
instead of xfer_secondary_buf().  This allows us to mix in 
more architectural randomness, and it also makes 
xfer_secondary_buf() faster, moving a tiny bit of additional 
CPU overhead to process which is extracting the 
randomness.

[ Commit description modified by tytso to remove an 
extended advertisement for the RDRAND instruction. ]

Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: DJ Johnston <dj.johnston@intel.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org”

random: mix in architectural randomness earlier 
in extract_buf()  [September 2013]

“Previously if CPU chip had a built-in random number generator 
(i.e., RDRAND on newer x86 chips), we mixed it in at the very 
end of extract_buf() using an XOR operation.

We now mix it in right after the calculate a hash across the 
entire pool.  This has the advantage that any contribution of 
entropy from the CPU's HWRNG will get mixed back into the 
pool.  In addition, it means that if the HWRNG has any defects 
(either accidentally or maliciously introduced), this will be 
mitigated via the non-linear transform of the SHA-1 hash 
function before we hand out generated
output.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>”

random: use the architectural HWRNG  for the 
SHA's IV in extract_buf() [December 2013]

“To help assuage the fears of those who think the NSA can 
introduce a massive hack into the instruction decode and out 
of order execution engine in the CPU without hundreds of Intel 
engineers knowing about it (only one of which woud need to 
have the conscience and courage of
Edward Snowden to spill the beans to the public), use the 
HWRNG to initialize the SHA starting value, instead of xor'ing it 
in afterwards.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>”

For full code, see: 
https://github.com/torvalds/linux/blob/master/
drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/
source/drivers/char/random.c 

https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://github.com/torvalds/linux/blob/master/drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/source/drivers/char/random.c
https://elixir.bootlin.com/linux/v3.0.41/source/drivers/char/random.c


Opcode Tester



● Concept: automate CPU analysis as far as possible

● Execute and analyze instructions in ring 3 and ring 0

○ Command-line tool

○ Input: Sandsifter log file (or similarly formatted instruction list)

○ Filter Sandsifter false positives with XED

○ Clock cycles, functionality analysis

○ Stable ring 0 (kernel driver) #UD handling

■ Test in ring 0 to see if an instruction is valid but privileged

■ Execute 500,000+  illegal instructions in the kernel...And nothing explodes!

■ Segfaults are harder to handle - but only crash the program, not the OS

● Lots more potential for development

https://github.com/cattius/opcodetester  

Opcode Tester

https://github.com/cattius/opcodetester


Where next?



Unanswered questions...

● What might we find looking for undocumented instructions in:

○ SGX

○ SMM

○ Other machine modes

○ ME (separate coprocessor)

○ Non-Intel processors



Unanswered questions...

● Why do instructions which normally throw #UD sometimes throw #GP 

instead? Is this a hardware bug, and could it be exploited?



Unanswered questions...

● How can we feasibly test for undocumented behavior which depends on 

‘password’ register values?

EDI=9C5A203A  

activates 4 debug MSRs on AMD K7



Unanswered questions...

● Recall: do speculatively executed #UD instructions leave 

microarchitectural traces?

(Source: Intel Developer  Manual Vol. 3, section 6.15)



Thank you for listening!
Any questions?



Bonus: incrementing IP - when does an exception occur?

● User program:
○ LEA: Copy RIP + 0 offset to RDX
○ MOV: Set EAX to 0
○ CALL: Push return address (current RIP 

value) onto stack and jump to absolute 
address (value of RDX)

○ CALL E8 rel64 calls near with displacement 
relative to next instruction (so call next 
instruction, basically)

● Kernel program:
○ Mov RIP to RDX and then CALL the line 

itself
○ CALL FF calls near absolute indirect 

address given in register


