Rapid Prototyping for Microarchitectural Attacks

Catherine Easdon
Dynatrace Research
Graz University of Technology

Michael Schwarz
CISPA Helmholtz Center
for Information Security

Martin Schwarzl
Graz University of Technology

Daniel Gruss
Graz University of Technology

Abstract

In recent years, microarchitectural attacks have been demon-
strated to be a powerful attack class. However, as our em-
pirical analysis shows, there are numerous implementation
challenges that hinder discovery and subsequent mitigation
of these vulnerabilities. In this paper, we examine the attack
development process, the features and usability of existing
tools, and the real-world challenges faced by practitioners.
We propose a novel approach to microarchitectural attack
development, based on rapid prototyping, and present two
open-source software frameworks, libtea and SCFirefox, that
improve upon state-of-the-art tooling to facilitate rapid proto-
typing of attacks.

libtea demonstrates that native code attacks can be ab-
stracted sufficiently to permit cross-platform implementations
while retaining fine-grained control of microarchitectural be-
havior. We evaluate its effectiveness by developing proof-of-
concept Foreshadow and LVTI attacks. Our LVI prototype runs
on x86-64 and ARMv8-A, and is the first public demonstra-
tion of LVI on ARM. SCFirefox is the first tool for browser-
based microarchitectural attack development, providing the
functionality of libtea in JavaScript. This functionality can
then be used to iteratively port a prototype to unmodified
browsers. We demonstrate this process by prototyping the
first browser-based ZombieLoad attack and deriving a vanilla
JavaScript and WebAssembly PoC running in an unmodified
recent version of Firefox. We discuss how libtea and SCFire-
fox contribute to the security landscape by providing attack
researchers and defenders with frameworks to prototype at-
tacks and assess their feasibility.

1 Introduction

Since seminal early work on hardware timing channels in the
1990s [43,59, 133], software-based microarchitectural attacks
have significantly impacted the modern security landscape.
Such attacks can be categorized by the data security property
they compromise: confidentiality, integrity, or availability.

Microarchitectural side-channel attacks compromise data
confidentiality, leaking metadata (such as memory access
patterns) to infer the actual data from. These attacks were
historically used to attack cryptographic primitives [3,9, 85],
but more recently have also been applied to other targets
such as inter-keystroke timing [41, 64, 80, 93, 126]. A col-
laborating victim and attacker (i.e., a sender and receiver)
can use these same techniques to establish a microarchitec-
tural covert channel to exfiltrate data from a system [87].
This recent attack paradigm is particularly powerful as
it enables data to be directly leaked from internal CPU
buffers [14,47,49,50,90, 100, 106, 114,115, 123].

In contrast, microarchitectural fault attacks, which induce
faults via rapid memory accesses [39,53,56,61, 63,103, 120],
undervolting [55, 81, 89] or clock manipulation [109], com-
promise data integrity by exploiting the physical properties of
hardware from software. Finally, microarchitectural denial of
service attacks compromise data availability, for example by
degrading performance [7, 124] or halting the system [46, 54].

A common characteristic of all these attacks is that they
are complex to implement [8, 35, 137]. Contributing factors
include the complexity of modern microarchitectures, lack
of documentation of microarchitectural features, public un-
availability of microarchitectural debugging and tracing tools,
and noise induced by undocumented microarchitectural be-
havior or system activity. Hence, successfully implementing a
microarchitectural attack can be extremely challenging, even
with a strong conceptual understanding of how the attack
works. These challenges hinder attack discovery and mitiga-
tion in both academia and industry, as we explore in Section 3.

One approach to tackling the complexity of attack devel-
opment is automation. Differential analysis [131, 134] and
templating [35,41] can be used against applications to gen-
erate new attack variants from known attack types. For ex-
ample, ABSynthe [35] treats the CPU as a black box and
generates leakage maps for different instruction pairs to syn-
thesize contention-based covert channels. Osiris [130] tests all
CPU instructions for interferences to find new timing-based
covert channels, while Transynther [79] uses mutation-based

fuzzing to synthesize new Meltdown variants from existing
attack implementations.

However, these automated techniques are typically limited
to finding new variants of known attacks, rather than entirely
new attack types. Many of today’s known microarchitectural
attacks introduced entirely novel techniques [55, 56,58, 67,
81,88,117,118], a new threat model [63,97,102,111,114], or
an entirely different perspective, e.g., switching the attacker
and victim to turn existing attacks around [58,61, 115]. Find-
ing new attacks is therefore often still the result of manual
experimentation and analysis. Thus, in this paper we seek to
answer the question: How can we reduce the software imple-
mentation burden for manual development and reproduction
of microarchitectural attacks?

Informed by an investigation of the microarchitectural at-
tack development process, we develop two frameworks. The
first framework, libtea, provides an API that abstracts away
platform-specific implementation details such as native timers,
enabling rapid development of cross-platform attack proto-
types. The second framework, SCFirefox, exposes this API to
JavaScript in a modified Firefox browser to help researchers
assess the viability of browser-based microarchitectural at-
tack variants. Access to high-resolution timers, address in-
formation, and the ability to modify page-table entries from
JavaScript enables rapid prototyping of browser-based attacks.
Once their feasibility is determined, these prototypes can
be gradually ported to vanilla JavaScript and WebAssembly
(WASM).

While this work does not itself introduce a novel attack type,
we hope that our frameworks and rapid prototyping method-
ology will establish a strong foundation for practitioners to
do so in the future. Additionally, we contribute to improved
understanding of microarchitectural attacks, firstly by demon-
strating the first Load Value Injection (LVI) [115] attack on
ARMVS-A, and secondly by prototyping a browser-based
ZombieLoad [100] proof-of-concept (PoC) to present the first
Microarchitectural Data Sampling PoC for an unmodified
browser. We show that cache-line flushing is not necessary
to induce ZombieLoad leakage via microcode-assisted page-
table walks (variant 3), extending the scope of ZombieLoad
attacks to constrained environments such as JavaScript sand-
boxes.

Contributions. The contributions of this work are:

1. We investigate the microarchitectural attack development
process and evaluate existing attack frameworks.

2. We introduce libtea and SCFirefox, two open-source cross-
architecture and cross-platform frameworks for rapid pro-
totyping of attacks in native code and in JavaScript.

3. We prototype a Foreshadow PoC, the first Load Value
Injection (LVI) attack on ARM and the first browser-based
ZombieLoad attack.

4. We directly port our SCFirefox ZombielLoad prototype
to vanilla JavaScript and WASM to create the first Mi-
croarchitectural Data Sampling attack for an unmodified

browser, achieving a leakage rate of 1.48 B/s in Firefox
81 by exploiting page deduplication.

Outline. In Section 2 we provide relevant background. Sec-
tion 3 presents our analysis of the attack development process.
Section 4 presents our frameworks, and Section 5 demon-
strates their utility by developing a Foreshadow PoC, the
first LVI attack on ARMvS-A and the first browser-based
ZombieLoad attack. We discuss avenues for future work in
Section 6 and conclude in Section

2 Background

In this section, we introduce the relevant technical background
required for understanding the rest of the paper.

2.1 CPU Microarchitecture

The microarchitecture of a CPU refers to its specific hardware
implementation of the abstract architecture defined by the
CPU’s instruction set architecture (ISA). Typically, events
in the microarchitecture are transparent to the programmer
and its state cannot be directly queried. Microarchitectural
concepts of particular relevance to this work are the memory
hierarchy, out-of-order execution, and speculative execution.

The Memory Hierarchy. Historically, memory access la-
tency has been a bottleneck for execution on the CPU. To
mitigate this, typical computing systems have a hierarchi-
cal memory structure, using progressively smaller and faster
memory sections closer to the CPU to exploit temporal and
spatial locality of memory accesses. CPUs typically employ
one or more levels of fast core-private caches, e.g., L1, and a
slower last-level cache (LLC) shared between cores, e.g., L3
on most x86 cores and L2 on many Arm SoCs.

Speculative and Out-of-order Execution. These two per-
formance optimizations are common in modern CPUs. With
out-of-order execution, the CPU does not have to execute
instructions in program order. Instead, instructions later in the
instruction stream can be executed first if they do not depend
upon earlier instructions. This technique improves overall
performance, as instructions can be executed in parallel and
high-latency instructions need not block the pipeline.

Speculative execution optimizes handling of conditional
control-flow changes, i.e., conditional and indirect branches.
By predicting and speculatively executing the code path fol-
lowing a branch, the pipeline need not necessarily stall if the
value of the branch condition is not yet known. In the case of
a mispredicted branch, the speculatively executed instructions
are discarded and architectural state changes are rolled back.
However, microarchitectural state is not restored.

2.2 Microarchitectural Side-Channel Attacks

Microarchitectural side-channel attacks exploit side channels
in the implementation of the CPU and memory hierarchy.

These attacks can be classified into cache-, memory-, and
predictor-based side-channel attacks, categories which we
explore in more detail below. Transient-execution attacks
build upon these side channels to directly leak data rather
than metadata.

Cache and Memory Attacks. Cache attacks exploit the
timing differences between memory accesses that can be
served by the caches and memory accesses that have to re-
trieve data from main memory. By design, if an address is
cached (a cache hit) a load will be significantly faster than
if it must be fetched from a slower location, e.g., the DRAM
(a cache miss). Cache attacks can be divided into three main
types. With Evict+Time [84], an attacker fills a part of the
cache (e.g., a cache set) and measures how that influences
the execution time of the victim. With Prime+Probe [84],
an attacker fills a part of the cache and monitors whether
any part is evicted when the victim is executed. With Flush+
Reload [138] and variants such as Evict+Reload [41], an at-
tacker directly monitors cache-state changes on memory that
is shared with the victim, by actively flushing the line from
the cache and measuring if it is reloaded when the victim
is executed. Cache attacks have been demonstrated on data
caches [41, 68,84, 138], instruction caches [2,4,94], address-
translation caches [36,95], and DRAM buffers [88, 129]. Re-
lated attacks also attack the paging structures. These attacks
usually rely on a threat model where the attacker controls the
operating system [119, 129, 136], e.g., in the case of trusted
execution environments (TEEs) such as Intel SGX.

Predictor Attacks. Predictors used by modern CPUs can
also be exploited to leak side-channel information. Exploited
prediction types include branch prediction [5,22, 58], store-
to-load forwarding [53, 95, 107], cache way prediction [66]
and prefetching [104].

Transient Execution Attacks. Transient instructions are
instructions that are executed but never retire, i.e., they never
become architecturally visible but change the microarchitec-
tural state. The cause of transient instructions can be either
misspeculation or out-of-order execution after an assist, e.g.,
due to an exception occurring. Transient-execution attacks
exploit the fact that transient instructions have access to data
that is architecturally inaccessible. Transiently-accessed data
can be transmitted to the architectural domain via a microar-
chitectural covert channel. Based on the cause of transient
execution, such attacks are categorized into Spectre-type at-
tacks [15,31,57,58, 60, 70] (mispredicted speculation) and
Meltdown-type attacks [14, 15,67, 100, 106, 114, 123] (lazy
exception handling).

The original Meltdown attack [67] enables unprivileged at-
tackers to read kernel data (i.e., addresses with the User/Super-
visor bit set) that is cached in the L1 data cache. Subsequent
attacks have demonstrated that many other Meltdown variants
exist. Foreshadow [114], for example, enables attackers to
read unmapped pages (i.e., addresses with the ‘present’ bit
cleared), again provided that the data is cached in L1. Two

notable subsets of Meltdown-type attacks are Microarchitec-
tural Data Sampling (MDS) and Load Value Injection (LVI).
The MDS attacks RIDL [123], ZombieLoad [100], and Fall-
out [14] exploit Meltdown effects to sample memory accesses
as they pass through other microarchitectural buffers, such
as the line-fill buffers and store buffer. Load Value Injection
(LVI) [115] reverses the Meltdown effect, switching the roles
of the victim and attacker processes in a manner akin to a
Spectre attack. While Spectre injects attacker-controlled con-
trol flow, LVI injects attacker-controlled data into the victim’s
transient execution by triggering a fault in the victim.

2.3 Rapid Prototyping

In manufacturing, rapid prototyping describes a class of
methodologies where physical prototypes of a product are
created in order to quickly and iteratively improve upon a de-
sign. The estimated time and cost savings from the resulting
increased productivity are 50-90% [16]. Rapid prototyping
has also been successfully applied for decades in software
engineering [34, 69], and in both domains prototypes play a
variety of important roles in the product development process.
They are invaluable not only for testing but also for experi-
mentation and learning, evaluation of requirements, and com-
munication of product ideas (e.g., across diverse teams, to
management, or to clients) [16,69]. Throughout this work we
interpret the term ‘rapid prototyping’ as it is typically used in
software engineering, i.e., we do not refer to fully automated
fabrication of prototypes, but rather to facilitation of iterative
manual development.

3 The Microarchitectural Attack Develop-
ment Process

In this section, we analyze the microarchitectural attack devel-
opment process to determine which software implementation
challenges practitioners face and how these might be facili-
tated. We observe that most practitioners informally follow an
iterative process akin to rapid prototyping, and propose that
prototyping could be accelerated via the introduction of two
new software frameworks to improve upon state-of-the-art
tooling.

3.1 Motivation

While microarchitectural attacks have been systematized [10,
15,27,74,96, 108, 135], the development process for these
attacks has, to our knowledge, never been examined. Inves-
tigating this process enables us to identify and facilitate the
software implementation challenges involved. By doing so,
we hope to accelerate and reduce the cost of microarchitec-
tural attack discovery and mitigation. This cost can be ex-
tremely high, as was starkly illustrated by Meltdown and
Spectre, attacks that built upon results from years of previous

research [24]. Microsoft “mobilized hundreds of people” to
respond [25], while at Red Hat mitigations involved more than
60 engineers and cost over 10000 hours of engineering [73].

We consider the attack development process in three con-
texts: attack research, attack mitigation, and education. Re-
producing an attack is crucial for attack mitigation to de-
termine which systems are vulnerable and whether a mit-
igation is effective [33]. An attack may need to be repro-
duced from scratch: two of our industry interviewees reported
that the affected parties often do not provide PoCs to organi-
zations involved in the coordinated disclosure process, and
there are also published attacks for which no public PoCs
exist [14,46,48]. In the context of education, facilitating at-
tack implementation lowers the barrier to entry for learning
about microarchitectural attacks. While these attacks exploit
hardware, they destroy security boundaries at higher software
abstraction layers, e.g., process isolation. Microarchitectural
security education is therefore crucial so that technology pro-
fessionals are aware of the leaky “tower of abstractions” [74]
they are building systems upon, regardless of which abstrac-
tion layer they work at.

Concretely, in order to reduce the software implementation
challenges involved, we seek to answer the following research
questions (RQs):

* RQ1: Attack Building Blocks. What are the fundamen-
tal software building blocks used?

* RQ2: Microarchitectural Control. How can fine-
grained control over the microarchitecture be achieved?

* RQ3: Languages and Tooling. Which programming lan-
guages are used to implement attack building blocks?
How usable are existing attack development tools?

* RQ4: Process and the Role of Prototyping. Are there
process commonalities between different attacks, and be-
tween different practitioners? Are these sufficient for it to
be meaningful to discuss an overall ‘microarchitectural
attack development process’, and if so, what role does

prototyping play?

3.2 Methodology

We performed a mixed-methods analysis, combining a review
of prior academic work, data from 10 expert interviews, and
a user study with 28 student participants.

Literature Review. We considered all papers published at
the top four systems security venues CCS, NDSS, S&P, and
USENIX Security between 2015 and 2020 (inclusive) that
featured implementation of software-based microarchitectural
attacks targeting the CPU (N = 102). The list of papers in-
cluded is provided in the extended bibliography [28]. We also
considered any published source code for each paper. Papers
requiring external hardware or hardware modification were
excluded, as were papers targeting physical side channels.

Expert Interviews. We interviewed 10 microarchitectural se-
curity professionals (five in academia and five in industry).
The eligibility requirement was research or mitigation experi-
ence of at least two microarchitectural attacks. Interviewees
were recruited via email, Twitter, and an online conference
announcement. Of our academic interviewees, two were as-
sistant professors and three were PhD students. Collectively,
they had experience working on 37 microarchitectural at-
tack papers in 9 different research groups across 6 countries.
Our industry interviewees each had substantial recent experi-
ence of attack mitigation in industry. In total, this experience
spanned 6 companies in two countries. Additionally, all five
had published research in this area. All interviewees were
informed of the research aims, explicitly gave their consent
for their responses to be published anonymously, and were
able to review this paper before submission.

User Study. We conducted a double-blind within-subjects
user study in which we evaluated cache attack libraries as part
of an introductory graduate course on side-channel security.
We tested Mastik [137] and cacheutils [13] together with libsc,
an early prototype of libtea. Over 6 weeks, 19 pairs of students
implemented a cache covert channel, a cache template attack
on keystrokes [41], and a KASLR break (via prefetch tim-
ing [38], or Data Bounce [14]). Each pair tested one library
per task in a randomized order. We focused on evaluating
the usability of these tools and their attack building blocks
(RQ3). 28/38 students chose to participate in our survey. We
provide demographic statistics in [28]. While our institution
has no ethical review board, we carefully designed the study
to address ethical concerns appropriately: the survey was
opt-in and entirely independent from grading, and all study
responses were collected anonymously. The libraries were
anonymized for the students, with the library name replaced
in the code and documentation (e.g., with ‘library1’) and other
identifying information removed. None of the participating
students had an academic relationship to our frameworks or
the other libraries. To avoid bias, the authors did not teach
the lab sessions, and conducted initial analysis of the results
with the anonymized library names remapped by the course
practitioners before finally analyzing student comments that
deanonymized the frameworks, e.g., comments mentioning
functionality specific to one framework.

3.3 RQI1: Attack Building Blocks

Rather than focusing on identifying the abstract primitives re-
quired for a class of attacks as in prior work (e.g., a disclosure
gadget [25, 135]), we focused in our literature survey on iden-
tifying the concrete software constructs used to implement
or debug these primitives. The following building blocks are
most commonly used in prior work. (Note that [28] provides
full citation lists for each block.)
1. High-precision timers (95/102) [6,35,101]

2. Cache-related building blocks (79/102), such as flush-
based side and covert channels [7, 40, 138], eviction
set generation and eviction-based side and covert chan-
nels [19, 52, 68], and knowledge of physical addresses,
cache sets, or cache slices [36, 66, 127].

3. Transient-execution building blocks (43/102), such as
branch predictor mistraining [15, 22, 58], exception
handling [14, 67, 123], and memory and speculation
fences [53,79, 123].

4. Privileged building blocks (46/102), such as manipula-
tion of page tables or memory protection attributes [14,
100, 123], manipulation of model-specific or system reg-
isters [55,81, 116], execution in ring 0 [14, 15,67], fine-
grained execution control of TEEs [78,94, 118], and cus-
tom interrupt handlers [62, 119, 129].

Similarly, the most useful building blocks for our study par-
ticipants were Flush+Reload primitives including threshold
calibration (16/28) and high-level primitives for timing, mem-
ory accesses, and cache line flushing (15/28). While these
building blocks can be implemented in user-space, privileged
building blocks such as page table modification are more
challenging to implement. Examples of the required work
include developing custom drivers [44,119,129], patching the
Linux kernel [62,77,129], and even implementing a custom
operating system (OS) or hypervisor [23]. However, most
modifications are either not published [23, 44, 62, 129] or,
in the case of kernel patches, are only available for kernel
versions that are already end-of-life [77].

3.4 RQ2: Microarchitectural Control

Mcllroy et al. [74] describe the challenges of modeling mi-
croarchitectural state and determining how programs can ma-
nipulate it as “massive open problems”, as also confirmed by
our interviewees. One approach is to rely on a custom operat-
ing system to achieve a higher degree of microarchitectural
control. Microsoft use a custom OS for this purpose [23],
and 7/10 of our interviewees also reported that they or their
colleagues had previously used a custom kernel or hypervisor,
most commonly for page-table modification (4/10).

An alternative approach is to use custom drivers or kernel
patches with an existing mainstream kernel such as Linux.
Google uses this approach internally with their SafeSide
project [33] for end-to-end testing of software side-channel
mitigations [92], as did 5/10 of our interviewees. Advantages
include the reduced time investment required and the existing
rich software ecosystem and hardware support of mainstream
OSes. Moreover, our interviewees’ frustration about noise
most commonly concerned microarchitectural noise, such as
hardware prefetching and the influence of attack code itself

on microarchitectural state, rather than kernel-induced noise.

3.5 RQ3: Languages and Tooling

Languages. The majority of works are implemented in
C/C++ and/or assembly (96/102). All of our interviewees
also reported working predominantly in C/C++, using it as a
wrapper around core attack code in assembly (9/10) or (for at-
tacks also exploiting the GPU) graphics APIs such as OpenGL
(1/10). A frequent comment was that it is infeasible to im-
plement the core attack primitive in C/C++ as the resulting
machine code may be different than intended (7/10).

While most interviewees used assembly liberally (8/10),
many of our user study participants found higher-level wrap-
pers around assembly primitives to be one of the most useful
library features (15/28). This is an important consideration
for attack tooling, as even experienced systems programmers
may be unfamiliar with the particular assembly sequences
used in microarchitectural attacks. (27 /28 students reported
either some or substantial experience in low-level C/C++ and
operating systems, with 6 reporting substantial experience in
both.)

The second most commonly used language in our review is
JavaScript (18/102), either in pure browser-based attacks [36,
39, 101], or as a complement to PoCs in C [14, 58, 123].
WASM has the additional advantages of a linear memory
and close proximity to machine code [70, 123, 127], while
WebGL enables browser-based GPU attacks [26, 82].

Existing Tooling. We found 6 existing software frame-
works for microarchitectural attack development.
cacheutils [13, 38, 41] is a single C header providing
building blocks for Flush+Reload, Flush+Flush, and prefetch
attacks on x86 and ARMVS-A. Mastik [137] supports
trace-based cache attacks (Flush+Reload, Flush+Flush,
Prime+Probe) and performance degradation attacks on
x86. libflush [45, 65] provides support for Prime+Probe,
Flush+Reload, Evict+Reload, Flush+Flush and prefetch
attacks on x86, ARMv7, and ARMv8. XLATE [122] provides
implementations of a range of cache attacks and cache-based
covert channels for x86, notably featuring indirect cache
attack primitives that exploit the MMU. PTEditor [98]
enables user-space manipulation of page tables and memory
protection attributes on x86 and ARMv8. SGX-Step [117]
supports user-space page table manipulation, registration of
custom interrupt handlers and call gates (enabling arbitrary C
functions defined in a user-mode program to be run in kernel
mode, as used by [81]), and local APIC timer configuration
for single- and zero-step attacks against Intel SGX.

'We considered only tools intended for manual attack implementa-
tion, excluding complementary tools designed for automated attack discov-
ery [35,79], microarchitectural instrumentation, reverse-engineering, or pro-
filing [1, 71, 110, 125], side-channel analysis of binaries [131, 132, 134],
solely trace-driven analysis [94], and reproducible evaluation of existing
attacks [76]. SpeechMiner [135] was excluded from analysis because it was
not yet publicly available; we contacted the authors at the time to confirm this.
CacheZoom [77] was excluded because it is unsupported on recent kernels.

Feature Mastik cacheutils libflush libsc PTEditor SGX-Step XLATE This work
High-precision timers © © [] [] @] © © ®
Flush-based cache attacks [] [J [] [] O [] [] [
Eviction-based cache attacks [] @] [] [] @] O [] [J
Branch prediction mistraining @) [J @) C O (@] (@] [
Exception handling or suppression O [] O [@] © © []
Speculation fences [] [] @) [] [] [] @) ®
Obtain virtual/physical addresses and cache sets/slices [)) © [} [)} © © © []
Read/write page tables and memory attributes (@) @] @) C [] © @) o
Read/write model-specific/system registers O @] (@) [] @] [] @) [J
Custom interrupt handlers and call gates O @] O (@) @] [@) []
Fine-grained (TEE) execution control O O O C O [J O []
Facilitates porting to the browser O O @) C O @) @) []
Architecture(s) x86 x86, ARMvVS8-A x86, ARMvV7/8-A x86 x86, ARMvVS-A x86 x86, ARMv7/8-A x86, ARMv&-A
Operating systems (Linux, Windows 10) L L, W* L L LW L L L, W*

Table 1: A feature comparison of existing software libraries for microarchitectural attack development and the features of the
libtea and SCFirefox frameworks. @, ©, and O indicate respectively full support, partial support, and absence of a feature. We use
full and partial support to distinguish tools that are more fully-featured in a particular category, e.g., one tool may offer multiple
timers while the other tools (partial support) provide only rdtsc. * indicates that not all features are supported on this OS.

Collectively, these frameworks have been used in 40 works
(see [28]), demonstrating the utility of such tooling. Table
provides an overview of their features, with a focus on the
attack building blocks identified in RQ1, and compares them
to the functionality provided by our two frameworks. For
comparison, we include libsc, an early prototype of libtea we
evaluated in our user study to determine how to improve the
APL. This prototype was inspired by cacheutils and libflush,
providing similar functionality for Linux x86 with additional
utility functions for cache covert channels and support for
reading model-specific registers.

As shown in Table 2, across all libraries and tasks the ma-
jority of our 28 user study participants agreed that the library
made it faster to implement attacks compared to developing
from scratch. For cacheutils and libsc, the majority agreed
they reduced the amount of debugging required. Each tool had
its strengths and weaknesses: Mastik was praised for its sup-
port for trace-based attacks (3/28) and consistent API for all
attacks (3/28) but was difficult to build (17/28). Students ap-
preciated the simplicity of cacheutils (16/28) and the fact it is
entirely self-contained in one header (3/28) but found its low-
level API and lack of documentation confusing (12/28). In
contrast, the API of libsc was much preferred, as it combined
more explanatory function names (e.g., 1ibsc_timestamp
versus rdtsc) (8/28) with better documentation (12/28) and
configurable timers (3/28). However, for all libraries students
requested more documentation and examples.

Of our interviewees, 3/10 had found cacheutils useful,
while one had also used Mastik and SGX-Step. Generally,
interviewees reported frequent code reuse individually (7/10)
or within their organization (5/10), but often did not consider
this substantial enough to be ‘tooling’ (5/10). Five intervie-
wees thought further tooling would be useful, while four were
skeptical it could provide sufficient microarchitectural control.
A further challenge was losing access to one’s code or tooling
when switching organizations (2/10).

3.6 RQ4: Development Process and the Role
of Prototyping

When asked directly, 6/10 of our interviewees claimed there
was no process common to the attacks they had worked on.
However, as they described their work to us we identified
several process commonalities, along with two distinct devel-
opment scenarios. In scenario A, work focuses on identifying
or implementing an entirely novel side channel, entailing
substantial experimentation. In scenario B, a side channel
is known and the focus is on identifying attack targets for
exploitation. Our focus in this work is facilitating manual
attack discovery and PoC creation. Hence, we only analyze
the development process for scenario A; orthogonal tooling
exists for scenario B [131, 132, 134].

If not prompted by a disclosure, the development process
starts with an initial idea or observation. Reported sources of
ideas included manufacturer documentation, patents, knowl-
edge of prior art, research discussions, blog posts, and teach-
ing. Experimentation with microbenchmarks and implemen-
tation of a simple PoC then begins. Our interviewees stressed
the importance of having as much control over the microarchi-
tecture as possible when starting with a PoC (9/10). Even if
aiming to produce a browser-based attack, one would always
begin with native code. Many of our interviewees found this
implementation stage challenging (6/10). However, this was
attack-dependent, with three interviewees reporting that initial
prototyping was straightforward and rapid (< 24 hours).

Throughout the development process, communication of
ideas is necessary within the team and with third parties, e.g.,
for coordinated disclosure. For our academic interviewees,
this included collaborating on a paper and negotiating the
potential conflict between disclosure embargoes and their
publication requirements. Our industry interviewees needed
to negotiate with management and align mitigation strategies
with other industry players, while taking extensive measures
to maintain the embargo and avoid allegations of collusion. In

Library

Mastik cacheutils libsc

There are a good range of high-level features

There are a good range of low-level features

It was easy to understand the library at the beginning

Once I had familiarized myself with the library, it was easy to use
The function names made it clear how they should be used

It would be easy for me to adapt or extend the library if I needed to

69.6% 66.7% 85.7%
56.5% 62.5% 71.4%
34.8% 66.7% 90.5%
69.6% 87.5% 90.5%
43.5% 79.2% 85.7%
30.4% 66.7% 61.9%

The library was easy to build 17.4% 100% 90.5%
I think this library makes it faster to implement attacks compared to developing from scratch 65.2% 87.5% 81.0%
I think this library reduces the amount of debugging needed compared to developing from scratch 47.8% 66.7% 71.4%
I spent a lot of time debugging my code because I misunderstood the library functions or they didn’t do what they were supposed to 17.4% 8.3% 19.1%

The documentation and examples were helpful
The library has sufficient documentation and examples

26.1% 41.7% 66.7%
26.1% 33.3% 61.9%

Table 2: Summary of the user study results evaluating the usability of cacheutils, Mastik and libsc.

both settings, PoCs play an important role in communication.
For example, manufacturers normally request PoCs in the dis-
closure process [42], and for mitigations, PoCs help assess the
risk posed by a vulnerability, as one of our industry intervie-
wees reported: “[I wrote] an exploit that leaks 100KB/s...that
really completely changed the discussion internally.”

Once initial PoCs have been created, if the goal is an end-
to-end attack then the assumptions made can gradually be
reduced until the attack model is realistic. However, rather
than a linear progression from experimentation to a ‘deliver-
able’ such as an end-to-end attack and paper, or a full product
mitigation, interviewees described an iterative process (5/10).
There are clear parallels with the rapid prototyping method-
ologies used in software development: while an end-to-end
attack may be iteratively developed from an initial prototype
(5/10), i.e., is an evolutionary prototype, the process may also
involve many other microbenchmarks and experiments, i.e.,
throwaway prototyping [34].

Current Limitations of Prototyping. Section intro-
duced the different use cases for prototypes throughout the
product development process. Similarly, PoCs - the rapid
prototypes of the security world - serve many of these roles
in microarchitectural attack development. However, typical
PoCs have limitations versus the rapid prototypes produced in
product development. In particular, 7/10 of our interviewees
highlighted that a PoC is typically only useful for communi-
cation on a surface level, e.g., demonstrating a vulnerability
to collaborators or management. Microarchitectural attack
code can be difficult for even experienced practitioners to
comprehend (3/10) and is extremely fragile. One interviewee
also stressed the importance of others independently reimple-
menting PoCs to ensure the root cause is properly understood.

3.7 Summary

We conclude from our analysis that most practitioners infor-
mally follow an iterative development process. Such a process
is ideally suited to rapid prototyping [34, 69]. However, the
pace of prototype development is currently slowed by sub-
stantial software implementation challenges that could be

facilitated by improved tooling. While existing tools have
helped facilitate attack research, none provide all common
attack building blocks on their own, and they have very dif-
ferent interfaces and intended use cases. A further challenge
is that PoCs are less effective as communication tools than
traditional prototypes. A high-level API could enable creation
of PoCs that are more expressive and easier to understand,
helping to abstract away from implementation details to com-
municate and reason about the underlying concepts.

4 Frameworks

Informed by our findings in Section 3, we developed two
frameworks to support rapid prototyping in the microarchitec-
tural attack development process. The first, libtea, implements
the fundamental microarchitectural attack building blocks
identified for RQ2 in the most widely-used attack develop-
ment language, C. The second, SCFirefox, brings the capa-
bilities of libtea to JavaScript in Firefox to facilitate porting
of native-code prototypes to the browser. Both frameworks,
including API documentation and examples, are available on
GitHub [28].

4.1 libtea

libtea (short for Transient Execution Attack library) provides
fine-grained control of microarchitectural behavior via a high-
level, platform-agnostic API. The API blurs the traditional
boundaries between unprivileged C code, the OS, and the TEE
(Intel SGX) by mapping privileged interfaces into user-space.
It combines the functionality of PTEditor and SGX-Step with
a revised and extended version of our /ibsc library (informed
by the feedback from our user study) in a unified API. As pre-
viously shown in Table [, it provides all of the attack building
blocks identified in RQ1. This facilitates rapid prototyping,
as cross-platform attacks requiring control over OS features
such as page tables, scheduling, and interrupts can be devel-
oped without needing to modifying the kernel or consider
platform-specific implementation details. Privileged function-
ality is provided by a single kernel driver, enabling attacks to

be prototyped within a mainstream OS (Linux or Windows)
to take advantage of its rich application environment.

Implementation. /ibtea is implemented in C as a collection
of files that are configured and compiled into a single mod-
ular C header and a supporting kernel driver. The header is
designed to be used in combination with other software li-
braries and is highly configurable. Unused modules can easily
be removed in the build process, and all names and defini-
tions are prefixed to minimize the risk of namespace conflicts.
Architecture-specific code is in separate files so that adding
support for a new architecture is straightforward and does not
require edits across the entire codebase. The kernel driver
enables functionality that requires privileged instructions or
close interaction with the OS, for example modifying page
tables.

Our identified attack building blocks are provided across
five modules and described in detail in Appendix A. Com-
mon contains general primitives, e.g., high-resolution timers
and functions to reduce system noise. Cache provides cache-
attack primitives, e.g., Flush+Reload and Prime+Probe, and
high-level functions such as cache covert channel encoding
and decoding. Paging provides functionality to interact with
page tables and page-translation caches. These first three mod-
ules support Linux and Windows 10 on x86-64, as well as
Linux and Android on ARMv8-A. Common additionally sup-
ports Linux on PPC64. Note that the Cache and Common
modules can be used without the kernel driver with the ex-
ception of a few privileged functions. It is required, however,
for typical use cases of the Paging, Interrupts and Enclave
modules. The primitives in these modules are intended for
privileged attack scenarios (in particular, attacking Intel SGX),
as they cannot be replaced with unprivileged alternatives. In-
terrupts and Enclave are built upon SGX-Step and currently
only support Linux on x86-64". In addition to functionality
for manual interrupt and call gate configuration, Interrupts
provides a helper function to easily execute arbitrary C func-
tions in kernel mode. This facilitates rapid prototyping when
short snippets of privileged code are required, as these can be
modified and tested without needing to recompile and reload
a kernel driver.

4.2 SCFirefox

SCFirefox facilitates browser-based attack research by blur-
ring the boundaries between sandboxed JavaScript and privi-
leged native code in a first-of-its-kind framework that exposes
the Common, Cache, and Paging functionality of libtea to
JavaScript in a modified Firefox browser. This functionality
greatly facilitates rapid prototyping and eliminates the need

Mt is unfortunately not possible to port the SGX single-stepping func-
tionality to Windows (without relying on undocumented APIs that may vary
between OS builds), because the hardware abstraction layer does not provide
drivers direct access to the local APIC timer [139].

to manually modify the JavaScript engine for basic attack
building blocks, such as high-resolution timers as in prior
work [66, 123]. For example, a pointer to memory with the
‘present’ bit cleared (to prototype a Foreshadow or RIDL
PoC) can be obtained in one line of JavaScript with SCFire-
fox, rather than having to determine the memory layout of
the browser tab’s process and clear the bit in a separate native
code program using e.g., PTEditor or SGX-Step. This enables
rapid prototyping of gradually more realistic PoCs, quickly
producing an initial PoC with SCFirefox and then iteratively
replacing building blocks with vanilla JavaScript or WASM,
as we demonstrate in Section

Facilitating browser-based attack research is crucial for
our understanding of the threat posed by microarchitectural
attacks, as an attack in the browser has far greater potential im-
pact. However, there are no existing frameworks to facilitate
the creation of browser-based PoCs, and such PoCs are more
challenging to implement than in native code due to the ab-
sence of many common building blocks [83], e.g., cache-line
flushing and high-resolution timers [36, 101, 127], and recent
mitigations implemented by browser vendors against side-
channel and transient execution attacks [121]. While there are
JavaScript libraries for exploit development [86], these focus
on memory corruption exploits rather than microarchitectural
attacks, and to our knowledge none provide out-of-the-box
support for performing kernel-mode operations (e.g., modify-
ing page-table entries) directly in JavaScript.

Implementation. SCFirefox is implemented as a custom
JSClass within the Firefox JavaScript engine, SpiderMonkey,
using the engine’s C++ API, JSAPI [75]. The current release
is compatible with Firefox 89, but the modified files are rela-
tively stable since Firefox 81, so we anticipate that porting it
to newer versions is feasible. The SCFirefox API can be used
either directly in the browser or in the SpiderMonkey shell.

4.3 Rapid Prototyping with the Frameworks

As we learned from our expert interviewees, the development
process varies for each attack, and each team may prefer a
different approach to prototyping with our frameworks. How-
ever, the following is an overview of how one might rapidly
prototype a browser-based attack. Section 5.3 provides a con-
crete example of this process being used to prototype the first
browser-based Zombieload attack.

Stage 1: initial prototyping with libtea begins with experi-
ments to test a hypothesis (e.g., ‘under condition X, data
can be leaked from A’) or, if working with an existing
attack, by reproducing an existing native code PoC.

Stage 2: throwaway prototypes are built with libtea. These
may be further experiments to better understand the leak-
age source and the conditions necessary to induce leakage,
or attempts to improve the leakage rate or relax the as-
sumptions made about the attacker’s capabilities.

Stage 3: evolutionary prototyping of the final attack begins
in SCFirefox. SCFirefox API calls are replaced one by one
with vanilla JavaScript or WASM until the attack can be
conducted in an unmodified browser.

Limitations. Even when using our frameworks, certain imple-
mentation challenges remain, such as those unique to microar-
chitectural attacks in JavaScript [11,36,39,58,83,99,101,123].
These include ensuring that JavaScript code is indeed JIT
compiled and not interpreted or optimized away [17, 18], trig-
gering misspeculation, and avoiding garbage collection [72].
We discuss some of these challenges in Section 5.3. Due to
varying branch prediction implementations, it is particularly
challenging to implement a misspeculation gadget that pro-
vides a long transient window across microarchitectures, so
attacks may require a hand-crafted Spectre gadget.

Ethical Considerations. In line with the ethical guidelines
of Google’s SafeSide project [33], our frameworks’ aim is to
facilitate attack prototyping only under controlled research
conditions (e.g., in a modified browser). End-to-end attacks
can indeed be created from prototypes by replacing each
framework building block with an unprivileged/vanilla alter-
native. Crucially, however, this requires manual effort and
often creation of novel attack techniques, as we demonstrate
in Section 5.3. This is an important difference from, for exam-
ple, penetration testing frameworks such as Metasploit [91],
and means that our frameworks do not enable automated cre-
ation of end-to-end exploits that could be weaponized.

5 Evaluation

In this section, we demonstrate the effectiveness of rapid
prototyping with our frameworks in three case studies, consid-
ering in turn the usability of the libtea AP, its cross-platform
support, and the rapid prototyping process with SCFirefox.

5.1 API Usability

To evaluate the usability of the unified API provided by libtea,
we prototype a Foreshadow PoC on x86 using the libtea C
header and kernel driver. We consider an educational scenario
where a student prototypes a Foreshadow attack against an
SGX enclave and attempts to experimentally demonstrate
that (counter-intuitively) the attack will succeed even when
the enclave secret is marked as uncacheable. This occurs
because the memory type specified for the Processor Reserved
Memory used by SGX overrides other memory types, such as
those from the Page Attribute Table (PAT) [51].

Using existing tooling, this PoC would require both PTE-
ditor and SGX-Step, because SGX-Step has no support for
modifying the PAT to make a page uncacheable, while PTEd-
itor has no support for SGX enclaves. However, while these
two frameworks can be used together, they have extremely

different APIs. In particular, they modify the page tables dif-
ferently with two separate drivers, so it requires care and
a detailed understanding of paging to avoid crashes. libtea
unifies the two APIs so that practitioners can more easily
benefit from the functionality of both frameworks. We took
care to ensure that method names are as self-explanatory
as possible to improve usability, and to provide additional
helper functions to abstract away from implementation details
that can slow development due to the cognitive overhead and
debugging required. For example, for improved readability
and to abstract away from this Intel-specific implementation
detail, the edbgrdwr function from SGX-Step is renamed
libtea_{read,write}_secure_addr. Similarly, we pro-
vide a single 1ibtea_set_page_cacheability function as
opposed to the combination of ptedit_find_first_mt and
ptedit_apply_mt required in PTEditor.

The abstraction offered by libtea is further illustrated in
Listing |, which compares the code required using each of
the three frameworks to obtain a secondary mapping for Fore-
shadow. In this example, we make the same assumption as
in the SGX-Step Foreshadow PoC [113] that we have the ad-
dress of an enclave secret at enclave_ptr. Any architectural
access from outside the enclave (when running in release
mode) will trigger abort page semantics (returning —1), but if
the ‘present’ bit is cleared then we can transiently obtain the
data with Foreshadow. Obtaining a second virtual mapping
v2 to the underlying physical address allows us to clear the
‘present’ bit only on v2, so that the architectural enclave ac-
cess still succeeds. Calling mprotect with PROT_NONE will
clear the ‘present’ bit, but will change the PFN to point to
an uncacheable address. This is due to the PTE inversion
mitigation for Foreshadow, which cannot be disabled [20].
Clearing the bit manually instead (e.g., with libtea) will con-
fuse the kernel and can lead to the process being killed or even
a system crash. Instead, we must restore the unmitigated PFN
after the mprotect call informs the kernel this page is now
unmapped. Implementing this with PTEditor or SGX-Step
requires a good understanding of paging, and any mistake in
the implementation may cause a system crash. In contrast,
libtea handles this complexity for the user so that just two
lines of code are necessary.

Our Foreshadow PoC using TSX for exception suppression
requires 48 lines of code with 12 libtea calls. On an Intel
17-6700K with unmitigated microcode we achieve a 99.8 %
mean success rate over 1000 trials across all 64 cache lines of
a 4KB enclave page. Alternatively, using exception handling
we require 46 lines of code and 10 libtea calls, achieving a
success rate of 92.6 %. With an additional 22 lines and 10
libtea calls we can repeat the attack with an ‘uncacheable’ v1
and v2, where we observe a comparable success rate with TSX
(99.4 %) because, as discussed, SGX ignores the memory type
specified in the PAT. Note that we use an enclave in debug
mode for all three PoCs, as a commercial license agreement
is required to launch in release mode.

1
2void* alias_ptr = remap_page_table_level (enclave_ptr, PAGE);
3 void* pte_alias = remap_page_table_level (alias_ptr, PTE);

4uint64_t pte_alias_unmapped = MARK_NOT_PRESENT (*pte_alias);

smprotect ((void*) (((uint64_t) alias_ptr) & ~PFN_MASK), 4096,
PROT_NONE) ;

6 *pte_alias = pte_alias_unmapped;

9 size_t pfn = ptedit_pte_get_pfn(enclave_ptr, 0);

10 void* alias_ptr = (void*)ptedit_pmap (pfn * 4096, 4096);

11 mprotect ((void*) (((uint64_t) page) & ~O0xfffULL), 4096,

12 PROT_NONE) ;

13 ptedit_pte_set_pfn(alias_ptr, 0, pfn);

14

15

16 void* alias_ptr = libtea_remap_address(instance, (uint64_t)

enclave_ptr, LIBTEA_PAGE, 4096, PROT_READ, true);
17 libtea_mark_page_not_present (instance, alias_ptr);

Listing 1: Comparison of using the three frameworks to obtain
a secondary mapping for Foreshadow.

5.2 Cross-Platform Support

To evaluate the effectiveness of the cross-platform support
provided by libtea, we prototype the first Load Value Injection
(LVI) attack on an ARMv8-A SoC using the libtea C header
and kernel driver. Our target device is a Samsung Galaxy S7
Edge smartphone running Android 7.0 with kernel 3.18.14.
It uses a Samsung Exynos 8890 SoC with four Cortex-A53
cores and four Exynos Mongoose 1 (M1) cores. We prototype
an LVI-US-L1D PoC leaking 2.49kB/s (n = 10000, 65 =
0.63) on our target device.

Attack Scenario. Van Bulck et al. [115] did not include
LVI-US-L1D in their classification tree, concluding that it
cannot be used because “a benign victim process would never
dereference kernel memory”. However, while a benign pro-
cess is indeed unlikely to architecturally dereference kernel
memory, we consider the scenario where a benign process
transiently dereferences a kernel memory address due to mis-
speculation. In line with libtea’s intended purpose, our LVI-
US-L1D attack is a prototype and not a full end-to-end attack.
However, an end-to-end LVI-US-L1D attack may be feasi-
ble, even on systems with active Meltdown mitigations. The
key requirements are direct or indirect attacker control over a
speculatively dereferenced address and the presence of an LVI
gadget within this transient execution stream. For example,
program data (e.g., a negative 64-bit integer variable) might
be confused as a kernel address in a misspeculated branch. If
the attacker controls this data, they control which address is
speculatively accessed and can therefore inject data.

On systems without in-silicon fixes for Meltdown, the KPTI
patch [29] is required to mitigate Meltdown. While this un-
maps most kernel addresses from user-space, some kernel
addresses must necessarily remain mapped. Therefore, an at-
tacker could still inject values from the small set of kernel
addresses which remain mapped into each user process. These

10

provide a variety of data values that could be injected into the
victim, particularly if an attacker only needs to inject a single
byte, as there is a good probability of finding the required
byte value 0-255 within the at least 4096 B of mapped kernel
memory.

Attack Development Process. The Exynos M1 cores are
known to be susceptible to Meltdown [67]. We verified this
susceptibility to Meltdown using libtea, suppressing excep-
tions via misspeculation and encoding values into a Flush+
Reload-based covert channel. Building from this PoC, we
conducted throwaway prototyping investigating the M 1’s sus-
ceptibility to Foreshadow and the MDS vulnerabilities. This
was ideally suited for rapid prototyping as each prototype
required changing only a few lines of code, e.g., to clear a
different bit in a page-table entry (PTE) using the privileged
page-table functionality provided by the kernel driver. We did
not observe leakage with any of these prototypes, and con-
clude that the M1 is likely not vulnerable to Foreshadow or
any MDS variant. However, we were able to invert Meltdown
to mount an LVI attack (i.e., LVI-US-L1D).

LVI-US-L1D PoC. In our toy scenario, the victim derefer-
ences an array of attacker-provided values. The values within
the loop bound are valid user-space addresses, while the val-
ues beyond the loop bound are malicious kernel-space ad-
dresses that are transiently dereferenced due to misspecula-
tion. We choose these addresses to be direct-physical map
addresses for the attacker’s own process, and can therefore
inject any byte value(s) we wish. We rely on root privileges
to determine the kernel direct-physical map address of our
toy injected data, but this is not necessary for an end-to-end
exploit [67]. For evaluation purposes, we consider a simple
cache encoding LVI gadget to recover our own injected bytes.

void victim() {
size_t dummy = 0;
uint64_t c = pow(2, 63);
+ for(int i = 0; 1 < 100; i++) {

6 dummy = 1; libtea_flush (&dummy); libtea_access (&dummy) ;

8 for
9 asm volatile
10 }

1 libtea_flush(&c);

(volatile int

("r

u=0; u<100; ut+) {
)4

13 if(c / 0.5 > 1.1) {

15 char val = *addrs[i];

17 libtea_cache_encode (instance, (val - "A"));
}
19 c /= 2;

20 }

Listing 2: Toy victim function for LVI.

Listing 2 shows our toy victim function, which contains a
loop vulnerable to Spectre V1. Within the loop, the attacker-
controlled array of addresses is dereferenced, and the deref-
erenced values are encoded into the cache by a disclosure

gadget (libtea_cache_encode). We can suppress excep-
tions by providing valid user-space addresses for the array
indices within the loop bound and only including the kernel-
space address used for injection at indices beyond this bound.
Thus, these out-of-bounds addresses are only ever accessed
transiently due to misspeculation, and any value checks that
the victim might conduct before the loop do not apply. To
extend the transient window, we flush a dummy variable from
the cache and then access it so that the CPU will speculate
beyond this point while it waits for the load to complete. To
further extend the window, we include two pages flushed from
the cache (throttle) in our loop condition. Misspeculation
occurs because the loop condition is met while i < 64, training
the branch predictor to continue with the next iteration. Hence,
the processor misspeculates for multiple iterations although
the condition is architecturally false.

Our prototype consists of an injector process and an attack
process, both running on the same Exynos M1 core. The in-
jector process continuously accesses the byte to inject to keep
itin L1. The attack process makes an API call to the toy vic-
tim function, decodes the injected data using Flush+Reload,
and outputs the decoded values as a histogram. This can be
achieved in a single function call using libtea’s cache covert
channel histogram functions, as shown in Listing 3.

| libtea_instance* instance = libtea_init_nokernel();

3 for(int 1 = 0; 1 < 64; 1i++)

t addrs[i] = valid_addr;

sfor(int 1 = 64; i < 100; i++)

6 addrs[i] = kernel_inject_addr;

7 libtea_set_timer (instance, LIBTEA_TIMER NATIVE);

8 libtea_print_cache_decode_histogram(instance, 100000,
9 50, true, true, victim, 'A’, 0, 26);

10 libtea_cleanup (instance) ;

Listing 3: Exploiting the toy function with libtea.

Evaluation. To evaluate the attack, we averaged the results
over 10000 iterations of 10000 samples. We also evaluated
the prototype on three Intel CPUs (i7-8700K, i7-6700K, and
17-4790). Aside from retuning the covert channel threshold,
no changes were necessary to port the PoC to x86 due to
the cross-platform support of libtea. However, it is impor-
tant to note that different CPU microarchitectures can exhibit
very different branch prediction behavior. Fundamental mi-
croarchitectural differences such as this cannot be abstracted
away by libtea, and so an attack may require or benefit from
microarchitecture-specific tuning. For example, by modifying
our Spectre V1 gadget to use throttle variables in the loop con-
dition we can achieve an improved leakage rate of 3.91kB/s
on the Exynos M1, whereas on the Intel CPUs this change
actually inhibits the leakage.

Table 3 compares the leakage rates and F; scores achieved
on the M1 and the Intel microarchitectures. With around
7kB/s, the leakage rates we achieve on Coffee Lake and Sky-
lake are comparable to the ideal case leakage reported by Van
Bulck et al. [115] (9.04 kB/s) and substantially exceed their

11

CPU Leakage (kB/s) Fp Score
Exynos M1 2.49 0.98
i7-8700K (Coffee Lake) 7.36 0.99
17-4790 (Haswell) 7.20 0.98
i7-6700K (Skylake) 7.46 0.99

Table 3: LVI leakage across the evalauted microarchitectures.

leakage in other attack scenarios (e.g., 70.54 B/s). Our high
F| scores on both ARMvS8-A and x86 demonstrate not only
that /ibtea can be used to prototype low-noise microarchitec-
tural attacks, but also more generally that it is indeed possible
to prototype cross-platform attacks using a high-level library.

5.3 Rapid Prototyping with SCFirefox

In this section, we evaluate SCFirefox by rapidly prototyping a
browser-based ZombieLoad attack. Specifically, we prototype
ZombieLoad variant 3, as this is the only variant that can
be conducted by an unprivileged attacker without access to
TSX [100]. To fully illustrate rapid prototyping in action, we
provide a detailed description of our development process.
Note: throughout this section, we use () to denote specific
attack building blocks.

Experimental Setup. The experiments described in this sec-
tion were conducted on an Intel i7-8700K running Windows
10 Pro v2004 (build 19041.388) with microcode 0xB4 and
full transient-execution attack mitigations. For a more stable
core frequency, we disabled Intel SpeedStep and Intel Turbo
Boost. We also conducted our accessed bit clear experiments
on two other systems (Windows 10 Enterprise v1803 build
17134.1, 15-4300; Pro v1909 build 18363.1082, i5-6400).

Technical Background. For ZombielLoad variant 3, the at-
tacker requires two mappings (virtual addresses) v/ and v2
to the same physical address (). If the PTE of v/ has the
‘accessed’ bit cleared (), a microcode-assisted page-table
walk will occur when accessing the physical page through
this address. Simultaneously flushing v2 leads to a cache-
line conflict 3) and can induce data leakage from the line fill
buffer and load port. This data can be transiently encoded for
subsequent decoding, e.g., in a cache covert channel @).

Working set trim scan. Windows clears the ‘accessed’ bit
during the working set trim scan to track the ‘age’ of each
PTE [139]. The working set manager is called once per second
and additionally when certain memory conditions occur [139].
However, it does not always conduct a trim scan, and it is not
documented how often this occurs.

Page deduplication. Page deduplication, known as page
combining on Windows and Kernel Same-Page Merging on
Linux, scans memory for identical pages, releases all but one
of the pages, and marks the remaining pages as shared. If
a process writes to this shared page, a copy-on-write fault
creates a new copy of the page for the process [139].

Stage 1: Native Code PoC. We begin by reproducing Zom-
bieL.oad variant 3 in native code on Windows using libtea.
All four building blocks are provided by libtea functions. For
), we require the libtea kernel driver to modify PTEs, while
for 3 we induce a cache-line conflict by flushing v2 imme-
diately before accessing vI. To achieve a practical leakage
rate, we construct a misspeculation gadget to speculatively
access v/ and encode its value into our /ibtea cache covert
channel @) without setting the ‘accessed’ bit, so that we only
need to clear it once. We favor misspeculation over excep-
tion handling or TSX because we cannot use the latter two
techniques in a JavaScript PoC. Schwarz et al. [100] achieved
a leakage rate of 0.08kB/s on an i7-8650U using excep-
tion handling. We achieve leakage rates of 0.15kB/s (n =
10000, oz = 0.002), exceeding the public PoC, with a low
false positive rate (0.002%). This demonstrates that /ibtea
enables prototyping of highly efficient PoCs. The number of
lines of code required is comparable to the public PoC, which
uses cacheutils (75 lines of code versus 61 for our PoC). We
found that cursor movement and interaction with the GUI
are necessary for continued leakage with our PoC; when idle,
leakage begins to fail after around 1000 iterations. This does
not appear to be caused by interrupts or polling for physical
mouse input, as we also tested with software-injected cursor
movement.

Stage 2: Throwaway Prototyping. We conduct throwaway
prototyping with libtea to determine if we can implement our
building blocks using only unprivileged code. If we cannot,
then an attack in an unmodified browser is infeasible.
Clearing the ‘accessed’ bit without libtea. While an unpriv-
ileged attacker cannot modify PTEs (without an additional
exploit, e.g., Rowhammer [39]), Schwarz et al. [100] exper-
imentally determined that Windows 10 periodically clears
the ‘accessed’ bit on user pages.” If we map a memory page,
access it, and then repeatedly loop checking the ‘accessed’
bit of its PTE (using the libtea paging functions) without ac-
cessing the page itself, we observe that the bit is first cleared
on average after 0.50s (n = 100, 6z = 0.09). We confirmed
this behavior on our other two systems, observing average
timings of 152.27s (n = 50, 6; = 89.45) and 1.45s (n = 50,
o3 = 0.10) respectively. While the timing appears to vary by
Windows build and system specification, in all three cases the
time required is feasible for a browser-based attack.
Obtaining shared memory. ZombielLoad variant 3 re-
quires shared memory [100], which is not readily avail-
able in JavaScript. In the Firefox codebase, we did not
find any code we could trigger from JavaScript that uses
CreateFileMapping. On Windows, an address can only be
mapped multiple times (creating multiple ‘views’) if it is
a file mapping opened with this function. However, we ob-

3Note that the Linux kernel swap daemon also clears the ‘accessed’ bit
for page aging on x86 (see arch/x86/mm/pgtable.c). However, in our
experiments we did not succeed in triggering an ‘accessed’ bit clear.

12

serve that despite formerly being disabled as a mitigation [36],
page combining is reenabled on Windows 10 by default, en-
abling us to revive prior browser-based page deduplication
attacks [11, 36, 37] to obtain shared memory. We rely on
deduplication within our own process to obtain two virtual
addresses mapping to the same physical address. For prototyp-
ing, we implement a new function for libtea and SCFirefox to
manually trigger a page combining scan and rapidly achieve
deduplication. However, a limitation versus our native code
shared memory is that we cannot write to either address.

Inducing a cache-line conflict without c1f1ush. A com-
mon strategy in prior work is to replace flushing with eviction
when porting attacks to the browser [36,39,58,83,95,101].
However, it is unlikely that any eviction set would evict
the cache line containing v2 at precisely the same moment
as the microcode assist for v/, which is required for Zom-
bieL.oad [100]. Fortunately, by prototyping with libtea, we
discover that simply accessing a different offset within the
same cache line is sufficient to trigger a conflict and there-
fore leakage. However, the leakage rate with an access-based
conflict is significantly lower than with flushing. While we
achieve a leakage rate of 0.15kB /s with flush-based conflict
in native code, we only achieve 2.55 B /s with access-based
conflict in native code.

Stage 3: Evolutionary Prototyping. Having determined
how to implement our building blocks, we begin prototyping
our attack in SCFirefox. Porting the PoC is mostly straight-
forward, as non-transient /ibtea API calls can simply be re-
placed with SCFirefox calls. When porting 3) we find that in
JavaScript we also have to randomly vary the offset we access
v2 at so that the JIT does not optimize the access away.

Prolonging the Transient Window. The final challenge to
produce an SCFirefox PoC is to create a sufficiently long
transient window. Browser-based misspeculation was first
demonstrated by Kocher et al. [58] with a transient out-of-
bounds array access. Due to Spidermonkey’s Spectre miti-
gations, such out-of-bounds accesses are no longer possible.
However, Spectre is not entirely mitigated and we can conduct
our attack with an in-bounds transient array access. We found
that most strategies developed in prior work [58,70,95, 123]
did not provide a sufficiently long transient window for Zom-
bieLoad variant 3 on the i7-8700K, but succeeded using a
gadget adapted from the Tencent PoC [112].

Our full ZombieLoad variant 3 PoC in SCFirefox consists
of 392 lines of code, relying on 15 libtea API calls. The
majority of these code lines are dummy lines required for
branch mistraining or to prevent function inlining. We achieve
a leakage rate of 55.85B/s (n = 1000, 6; = 12.43).

Finally, we replace SCFirefox functions with JavaScript and
WASM functions to produce a PoC for unmodified Firefox.

Page Combining. Instead of manually triggering deduplica-
tion for (T), we adopt the technique used by Gras et al. [36]
to detect when a page-combining scan occurs. We fill 8 4 kB
ArrayBuffers with identical random content and measure

the time it takes to modify a value of the array: when it takes
significantly longer, we assume we have encountered a copy-
on-write fault. We experimentally confirmed that our pages
are deduplicated, and found that it takes on average 12.49
minutes (n = 25, 6z = 4.43, range: 4.58 —22.39 minutes).
Similarly, we cannot clear the ‘accessed’ bit, but we can wait
for Windows to clear it. We find that the ‘accessed’ bit is set
on v/ after page combining, but within a few attack iterations
(1-18) it is again cleared.

Timing. For our cache covert channel @) we replace SCFire-
fox’s Flush+Reload with Evict+Reload, using a pseudoran-
dom buffer traverse for eviction (to evade adaptive cache
replacement policies [105]). We experiment with various
JavaScript timers [36, 101, 127]. While SharedArrayBuffer
has been re-enabled in Firefox [121], it provides insufficient
precision when used in a counting thread with a JavaScript
Worker. However, adapting the WASM timer of Vila et al.
[127] provides a sufficiently high resolution.

Our final PoC in vanilla JavaScript and WASM is 490 lines
of code and runs in unmodified Firefox 81.0.2 on Windows.
As using Evict+Reload and a WASM Worker timer intro-
duces some noise versus our SCFirefox PoC, we consider the
three most frequently leaked values per attack iteration of
200 samples as candidates for the leaked byte. In line with
previous work [36, 100, 101, 123], we assume that we can re-
peatedly leak the target values. Hence, any noise is averaged
out over sufficient attack repetitions. We achieve a leakage
rate of 1.48B/s (n = 1000, oz = 0.99), top-3 accuracy of
92.7% and a true-positive rate (leaked byte is indeed the
most frequently leaked value) of 88.8 % when our precondi-
tions (‘accessed’ bit clear, deduplication, co-location) are met.
This is comparable to the RIDL attack in a modified Spider-
Monkey shell [123] which leaked 1 B/s. Furthermore, if we
replace Evict+Reload with Flush+Reload using SCFirefox,
we can achieve a much higher leakage rate of 10.68 B/s (n =
1000, 6; = 6.48). This demonstrates that there is scope to op-
timize our Evict+Reload-based PoC, e.g., by using a minimal
eviction set [127].

Attack Scenario and Discussion. In our attack scenario,
the victim must browse to an attacker-controlled webpage
that remains open for 5-23 minutes, depending on when the
next page combining scan occurs. However, the tab does not
need to be in the foreground during this time: we confirmed
that the attack succeeds even while the victim is browsing
in other tabs. A final requirement is to synchronize with the
victim so that the attack runs while the targeted data is passing
through the line fill buffers; this can be achieved via one of
the synchronization techniques presented by Van Schaik et al.
[123] and Schwarz et al. [100], e.g., substring detection if the
secret is prefixed by a known sequence.

A significant assumption we make for evaluation is that
we have achieved co-location on the sibling core to the vic-
tim. Without pinning, the Windows scheduler reschedules
the browser tab thread to different cores so frequently that

13

attempting to detect co-location to synchronize the attack is
infeasible. Despite this, in the ideal case with victim appli-
cations running on one hyperthread of every physical core,
we can still achieve a leakage rate of 1.18 B/s (n = 1000,
oz = 0.72). However, we observe close to zero leakage in the
more realistic scenario of a single victim application running
pinned to one core. Future work could investigate methods to
influence the scheduler’s behavior from JavaScript to achieve
co-location, e.g., this might be an alternative application for
thread spraying [32].

6 Discussion

One limitation of our analysis of the development process
is the small scale of our expert interview study and the re-
stricted demographics of our user study. Many industry teams
consider their development process confidential, and as such
there is limited publicly-available information and reluctance
to approve interviews. Furthermore, in contrast to areas such
as software reverse-engineering [128], the field of microarchi-
tectural attacks is still small. Our aim in conducting our user
study among students of an introductory microarchitectural
security course was to complement our data from experienced
practitioners with data from beginners to the field. However,
the resulting homogeneity in participants’ academic back-
ground (21/28 were studying for a Master’s degree in Com-
puter Science or a related field) may have biased our results,
along with the homogeneity in gender and age (all participants
were male, with 24 /28 aged 23 — 26). Additionally, we could
not evaluate the usability of /ibtea because we conducted the
user study at the beginning of the design process.

We consider this work a first step towards establishing con-
crete methodology and tooling for microarchitectural attack
development, and hope future work will further explore at-
tack tooling usability, techniques for achieving microarchitec-
tural control, and challenges beyond software implementation.
One such challenge discussed by our interviewees was the
disclosure process (7/10) and potential standardization and
anonymous disclosure mechanisms. While this challenge is
not unique to microarchitectural security, the cross-cutting
nature of microarchitectural attacks has led to notably chal-
lenging disclosure experiences that highlighted the need for
greater standardization [12,21,30]. Such work would also be
of broader benefit to other information security practitioners.

There is also scope to further extend our frameworks, for
example integrating with existing software tools such as perf
or NanoBench [1] to provide access to hardware performance
counters for microbenchmarking. Additionally, /ibtea could
be extended to provide fine-grained control of other TEEs
such as Arm TrustZone, while SCFirefox could be ported to
other JavaScript engines, e.g., the V8 engine used by Google
Chrome and Microsoft Edge.

7 Conclusion

The complexity of microarchitectural attack implementation
poses a high barrier to entry for the field and slows research
progress. In this paper, we conducted the first investigation of
the attack development process to determine how we could
best help practitioners tackle this complexity. We introduced
rapid prototyping as an attack development methodology
and presented /ibtea and SCFirefox, open-source frameworks
which facilitate rapid prototyping of native code and browser-
based attacks by bridging traditional privilege boundaries and
abstracting away from the complex implementation details
of attack primitives. We demonstrated the improved usability
offered by the libtea API with a Foreshadow PoC, showcased
its cross-platform support with the first demonstration of LVI
on ARMVS-A, and illustrated the benefits of SCFirefox and
our rapid prototyping methodology by prototyping the first
browser-based ZombieLoad attack.

Acknowledgments

We would like to thank our anonymous reviewers and in par-
ticular our shepherd, Chris Fletcher, for their feedback that
helped improve this paper. We also thank Martin Deixelberger
for his work on SCFirefox; Moritz Lipp, Claudio Canella, and
Jo van Bulck for helpful discussions; and our expert intervie-
wees and user study participants for their valuable insights.
This work was supported by generous gifts from Red Hat,
Arm, Amazon, and Cloudflare. Any opinions, findings, con-
clusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the
funding parties or of the authors’ affiliations.

References
[1] ABEL, A., AND REINEKE, J. nanoBench: A Low-Overhead Tool for
Running Microbenchmarks on x86 Systems. In ISPASS (2020).

[2] Acn¢MEz, O., BRUMLEY, B. B., AND GRABHER, P. New Results

on Instruction Cache Attacks. In CHES (2010).

[3] AciicMEZ, O., AND Kog, c. K. Trace-Driven Cache Attacks on

AES. IACR Cryptology ePrint Archive (2006).

[4] ACIICMEZ, O. Yet Another MicroArchitectural Attack: Exploiting

I-cache. In CSAW (2007).

ACIICMEZ, O., SEIFERT, J.-P., AND Ko, C. K. Predicting secret
keys via branch prediction. In CT-RSA (2007).

[5]

[6] ALDAYA, A. C., BRUMLEY, B. B., UL HASSAN, S., GARCIA, C. P.,

AND TUVERI, N. Port Contention for Fun and Profit. In S&P (2019).

[71 ALLAN, T., BRUMLEY, B. B., FALKNER, K., VAN DE POL, J., AND
YAROM, Y. Amplifying Side Channels Through Performance Degra-

dation. In ACSAC (2016).

APPLE INC. About speculative execution vulnerabilities in
ARM-based and Intel CPUs, https://support.apple.com/en—
us/HT208394 2018.

(8]

[9] BERNSTEIN, D. J. Cache-Timing Attacks on AES, http://cr.yp.

to/antiforgery/cachetiming-20050414.pdf 2005.

14

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22])

[23]

[24]

[25]

[26]

[27]

(28]

[29]

Biswas, A. K., GHOSAL, D., AND NAGARAIJA, S. A survey of
timing channels and countermeasures. ACM Computing Surveys
(CSUR) (2017).

BosMAN, E., RAzAvI, K., BOs, H., AND GIUFFRIDA, C. Dedup
Est Machina: Memory Deduplication as an Advanced Exploitation
Vector. In S&P (2016).

BRANDOM, R. Keeping Spectre Secret, https://www.theverge.
com/2018/1/11/16878670/meltdown-spectre-disclosure-
embargo-google-microsoft-1inux 2018.

BULCK, J. V. cacheutils.h (linux), https://github.com/
jovanbulck/sgx-step/blob/master/app/lvi/cacheutils.h
2020.

CANELLA, C., GENKIN, D., GINER, L., GRuUSS, D., LipP, M.,
MINKIN, M., MOGHIMI, D., PIESSENS, F., SCHWARZ, M., SUNAR,
B., VAN BULCK, J., AND YAROM, Y. Fallout: Leaking Data on
Meltdown-resistant CPUs. In CCS (2019).

CANELLA, C., VAN BULCK, J., SCHWARZ, M., LipP, M., VON
BERG, B., ORTNER, P., PIESSENS, F., EVTYUSHKIN, D., AND
GRUSS, D. A Systematic Evaluation of Transient Execution Attacks
and Defenses. In USENIX Security Symposium (2019).

CHUA, C. K., LEONG, K. F., AND LiM, C. S. Rapid Prototyp-
ing: Principles and Applications (with Companion CD-ROM) Third
Edition. World Scientific Publishing Company, 2010.

DE MoolJ, J. CachelR: A new approach to Inline Caching in Firefox,
https://jandemooij.nl/blog/2017/01/25/cacheir/ 2017.

DE Moo, J. The Baseline Interpreter: a faster JS interpreter in Fire-
fox 70, https://hacks.mozilla.org/2019/08/the-baseline-
interpreter-a-faster-js-interpreter-in-firefox-70/

2019.

DISSELKOEN, C., KOHLBRENNER, D., PORTER, L., AND TULLSEN,
D. Prime+Abort: A Timer-Free High-Precision L3 Cache Attack
using Intel TSX. In USENIX Security Symposium (2017).

DOCUMENTATION, L. K. LITF - L1 Terminal Fault,
https://www.kernel.org/doc/html/latest/admin-guide/
hw-vuln/11tf.html 2021.

EDGE, J. A look at the handling of Meltdown and Spectre, https:
//lwn.net/Articles/743363/ 2018.

EVTYUSHKIN, D., PONOMAREV, D., AND ABU-GHAZALEH, N.
Jump over ASLR: Attacking branch predictors to bypass ASLR. In
MICRO (2016).

FALK, B. Sushi Roll: A CPU research kernel with mini-
mal noise for cycle-by-cycle microarchitectural introspection,
https://gamozolabs.github.io/metrology/2019/08/19/
sushi_roll.html 2019.

FOGH, A. Behind the scenes of a bug collision, https://cyber.
wt£/2018/01/05/behind-the-scene-of-a-bug-collision/
2018.

FOGH, A., AND ERTL, C. Wrangling the Ghost: An Inside Story of
Mitigating Speculative Execution Side Channel Vulnerabilities. In
BlackHat USA (2018).

FRIGO, P., GIUFFRIDA, C., Bos, H., AND RAZAVI, K. Grand Pwn-
ing Unit: Accelerating Microarchitectural Attacks with the GPU. In
S&P (2018).

GE, Q., YAROM, Y., COCK, D., AND HEISER, G. A Survey of
Microarchitectural Timing Attacks and Countermeasures on Contem-
porary Hardware. Journal of Cryptographic Engineering (2016).

GITHUB. Libtea and SCFirefox GitHub repository, https://github.
com/libtea/frameworks 2021.

GLEIXNER, T. x86/kpti: Kernel Page Table Isolation (was KAISER),
https://lkml.org/lkml/2017/12/4/709 2017.

https://support.apple.com/en-us/HT208394
https://support.apple.com/en-us/HT208394
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://www.theverge.com/2018/1/11/16878670/meltdown-spectre-disclosure-embargo-google-microsoft-linux
https://www.theverge.com/2018/1/11/16878670/meltdown-spectre-disclosure-embargo-google-microsoft-linux
https://www.theverge.com/2018/1/11/16878670/meltdown-spectre-disclosure-embargo-google-microsoft-linux
https://github.com/jovanbulck/sgx-step/blob/master/app/lvi/cacheutils.h
https://github.com/jovanbulck/sgx-step/blob/master/app/lvi/cacheutils.h
https://jandemooij.nl/blog/2017/01/25/cacheir/
https://hacks.mozilla.org/2019/08/the-baseline-interpreter-a-faster-js-interpreter-in-firefox-70/
https://hacks.mozilla.org/2019/08/the-baseline-interpreter-a-faster-js-interpreter-in-firefox-70/
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html
https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html
https://lwn.net/Articles/743363/
https://lwn.net/Articles/743363/
https://gamozolabs.github.io/metrology/2019/08/19/sushi_roll.html
https://gamozolabs.github.io/metrology/2019/08/19/sushi_roll.html
https://cyber.wtf/2018/01/05/behind-the-scene-of-a-bug-collision/
https://cyber.wtf/2018/01/05/behind-the-scene-of-a-bug-collision/
https://github.com/libtea/frameworks
https://github.com/libtea/frameworks
https://lkml.org/lkml/2017/12/4/709

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

GLEIXNER, T. Kernel hacking behind closed doors. In Kernel Recipes
(2019).

GOKTAS, E., Razavl, K., PORTOKALIDIS, G., BOS, H., AND GIUF-
FRIDA, C. Speculative Probing: Hacking Blind in the Spectre Era. In
CCS (2020).

GOKTAS, E., GAWLIK, R., KOLLENDA, B., ATHANASOPOULOS, E.,
PORTOKALIDIS, G., GIUFFRIDA, C., AND Bos, H. Undermining
Information Hiding (and What to Do about It). In USENIX Security
Symposium (2016).

GOOGLE. SafeSide: Understand and mitigate software-observable
side-channels, https://github.com/google/safeside 2019.

GORDON, V. S., AND BIEMAN, J. M. Rapid prototyping: lessons
learned. IEEE Software 12, 1 (1995).

GRAS, B., GIUFFRIDA, C., KURTH, M., Bos, H., AND RAZAVI, K.
ABSynthe: Automatic Blackbox Side-channel Synthesis on Commod-
ity Microarchitectures. In NDSS (2020).

GRAS, B., RazAvl, K., BOSMAN, E., Bos, H., AND GIUFFRIDA,
C. ASLR on the Line: Practical Cache Attacks on the MMU. In
NDSS (2017).

GRUSS, D., BIDNER, D., AND MANGARD, S. Practical Memory
Deduplication Attacks in Sandboxed JavaScript. In ESORICS (2015).

GRUSS, D., MAURICE, C., FOGH, A., LIPP, M., AND MANGARD, S.
Prefetch Side-Channel Attacks: Bypassing SMAP and Kernel ASLR.
In CCS (2016).

GRUSS, D., MAURICE, C., AND MANGARD, S. Rowhammer.js:
A Remote Software-Induced Fault Attack in JavaScript. In DIMVA
(2016).

GRUSS, D., MAURICE, C., WAGNER, K., AND MANGARD, S.
Flush+Flush: A Fast and Stealthy Cache Attack. In DIMVA (2016).

GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache Template
Attacks: Automating Attacks on Inclusive Last-Level Caches. In
USENIX Security Symposium (2015).

HOUSEHOLDER, A. D., WASSERMANN, G., MANION, A., AND
KING, C. The CERT Guide to Coordinated Vulnerability Disclosure.
Carnegie Mellon University, 2017.

Hu, W.-M. Reducing Timing Channels with Fuzzy Time. Journal of
Computer Security (1992).

HUND, R., WILLEMS, C., AND HOLZ, T. Practical Timing Side
Channel Attacks against Kernel Space ASLR. In S&P (2013).

TAIK. libflush, https://github.com/IAIK/armageddon/tree/
master/libflush 2017.

INTEL. Deep Dive: Machine Check Error Avoidance on Page Size
Change, https://software.intel.com/security-software-
guidance/insights/deep-dive-machine-check-error-
avoidance-page-size-change 2018.

INTEL. Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling, 2019.

INTEL. Mitigations for Jump Conditional Code Erratum, Revision
1.0, 2019.

INTEL. Deep Dive: Snoop-assisted L1 Data Sampling, https:
//software.intel.com/security-software-guidance/
insights/deep-dive-snoop-assisted-1ll-data-sampling
2020.

INTEL. Vector Register Sampling / CVE-2020-0548 / INTEL-SA-
00329, nhttps://software.intel.com/security-software-

guidance/software-guidance/vector-register-sampling

2020.

INTEL CORPORATION. Software Guard Extensions Programming
Reference, Rev. 2.

15

[52]

[53]

[54]

[55]

[56]

[571

[58]

[591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$A: A Shared
Cache Attack that Works Across Cores and Defies VM Sandboxing —
and its Application to AES. In S&P (2015).

IsLAM, S., MOGHIMI, A., BRUHNS, I., KREBBEL, M., GULME-
ZOGLU, B., EISENBARTH, T., AND SUNAR, B. SPOILER: Specula-
tive Load Hazards Boost Rowhammer and Cache Attacks. In USENIX
Security Symposium (2019).

JANG, Y., LEE, J., LEE, S., AND KiM, T. SGX-Bomb: Locking
Down the Processor via Rowhammer Attack. In SysTEX (2017).

KENJAR, Z., FRASSETTO, T., GENS, D., FRANZ, M., AND
SADEGHI, A. VOLTpwn: Attacking x86 Processor Integrity from
Software. In USENIX Security Symposium (2020).

KiMm, Y., DALY, R., KiM, J., FALLIN, C., LEE, J. H., LEE, D., WILK-
ERSON, C., LAL K., AND MUTLU, O. Flipping Bits in Memory With-
out Accessing Them: An Experimental Study of DRAM Disturbance
Errors. In ISCA (2014).

KIRIANSKY, V., AND WALDSPURGER, C. Speculative Buffer Over-
flows: Attacks and Defenses. arXiv:1807.03757 (2018).

KOCHER, P., HORN, J., FOGH, A., GENKIN, D., GRUSS, D., HAAS,
W., HAMBURG, M., LiPP, M., MANGARD, S., PRESCHER, T.,
SCHWARZ, M., AND YAROM, Y. Spectre Attacks: Exploiting Specu-
lative Execution. In S&P (2019).

KOCHER, P. C. Timing Attacks on Implementations of Diffe-Hellman,
RSA, DSS, and Other Systems. In CRYPTO (1996).

KORUYEH, E. M., KHASAWNEH, K., SONG, C., AND ABU-
GHAZALEH, N. Spectre Returns! Speculation Attacks using the
Return Stack Buffer. In WOOT (2018).

KWONG, A., GENKIN, D., GRUSS, D., AND YAROM, Y. RAMBIeed:
Reading Bits in Memory Without Accessing Them. In S&P (2020).

LEE, S., SHIH, M., GERA, P., KiMm, T., KiM, H., AND PEINADO,
M. Inferring Fine-grained Control Flow Inside SGX Enclaves with
Branch Shadowing. In USENIX Security Symposium (2017).

Lipp, M., AGA, M. T., SCHWARZ, M., GRUSS, D., MAURICE, C.,
RAAB, L., AND LAMSTER, L. Nethammer: Inducing Rowhammer
Faults through Network Requests. arXiv:1711.08002 (2017).

Lipp, M., GRUSS, D., SCHWARZ, M., BIDNER, D., MAURICE, C.-
M.-T.-N., AND MANGARD, S. Practical Keystroke Timing Attacks
in Sandboxed JavaScript. In ESORICS (2017).

Lipp, M., GRUSS, D., SPREITZER, R., MAURICE, C., AND MAN-
GARD, S. ARMageddon: Cache Attacks on Mobile Devices. In
USENIX Security Symposium (2016).

Lipp, M., HADZIC, V., SCHWARZ, M., PERAIS, A., MAURICE, C.,
AND GRUSS, D. Take a Way: Exploring the Security Implications of
AMD’s Cache Way Predictors. In AsiaCCS (2020).

Lipp, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS, W.,
FOGH, A., HORN, J., MANGARD, S., KOCHER, P., GENKIN, D.,
YAROM, Y., AND HAMBURG, M. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security Symposium (2018).

Liu, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B. Last-
Level Cache Side-Channel Attacks are Practical. In S&P (2015).

LUQI, AND STEIGERWALD, R. Rapid Software Prototyping. In
Proceedings of the Twenty-Fifth Hawaii International Conference on
System Sciences (1992).

MAISURADZE, G., AND Rossow, C. ret2spec: Speculative Execu-
tion Using Return Stack Buffers. In CCS (2018).

MAMBRETTI, A., NEUGSCHWANDTNER, M., SORNIOTTI, A.,
KIRDA, E., ROBERTSON, W., AND KURMUS, A. Speculator: A
Tool to Analyze Speculative Execution Attacks and Mitigations. In
ACM ACSAC (2019).

MANDELIN, D. Know Your Engines: How to Make Your JavaScript
Fast. In O’Reilly Velocity (2011).

https://github.com/google/safeside
https://github.com/IAIK/armageddon/tree/master/libflush
https://github.com/IAIK/armageddon/tree/master/libflush
https://software.intel.com/security-software-guidance/insights/deep-dive-machine-check-error-avoidance-page-size-change
https://software.intel.com/security-software-guidance/insights/deep-dive-machine-check-error-avoidance-page-size-change
https://software.intel.com/security-software-guidance/insights/deep-dive-machine-check-error-avoidance-page-size-change
https://software.intel.com/security-software-guidance/insights/deep-dive-snoop-assisted-l1-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-snoop-assisted-l1-data-sampling
https://software.intel.com/security-software-guidance/insights/deep-dive-snoop-assisted-l1-data-sampling
https://software.intel.com/security-software-guidance/software-guidance/vector-register-sampling
https://software.intel.com/security-software-guidance/software-guidance/vector-register-sampling

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]
[81]

[82]

[83]

[84]

[85]

[86]

[87]
[88]

[89]

[90]

[91]

[92]

[93]

[94]

MASTERS, J., AND CROB. Exploiting modern microarchitectures:
Meltdown, Spectre, and other hardware security vulnerabilities in
modern processors. In Red Hat Summit (2018).

MCILROY, R., SEVCIK, J., TEBBI, T., TITZER, B. L., AND VER-
WAEST, T. Spectre is here to stay: An analysis of side-channels and
speculative execution. arXiv:1902.05178 (2019).

MDN. JSAPI User Guide, https://developer.mozilla.org/
en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_User_
Guide 2020.

MIEDL, P., KLOPOTT, B., AND THIELE, L. Increased reproducibility
and comparability of data leak evaluations using ExOT. In Proceed-
ings of the 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE) (2020).

MOGHIMI, A., IRAZOQUI, G., AND EISENBARTH, T. CacheZoom:
How SGX amplifies the power of cache attacks. In CHES (2017).

MoOGHIMI, D., BULCK, J. V., HENINGER, N., PIESSENS, F., AND
SUNAR, B. CopyCat: Controlled Instruction-Level Attacks on En-
claves for Maximal Key Extraction. In USENIX Security Symposium
(2020).

MoGHIMI, D., L1PP, M., SUNAR, B., AND SCHWARZ, M. Medusa:
Microarchitectural Data Leakage via Automated Attack Synthesis. In
USENIX Security Symposium (2020).

MONACO, J. SoK: Keylogging Side Channels. In S&P (2018).

MURDOCK, K., OSWALD, D., GARCIA, F. D., VAN BULCK, J.,
GRUSS, D., AND PIESSENS, F. Plundervolt: Software-based Fault
Injection Attacks against Intel SGX. In S&P (2020).

NAGHIBIJOUYBARI, H., NEUPANE, A., QIAN, Z., AND ABU-
GHAZALEH, N. Rendered Insecure: GPU Side Channel Attacks
are Practical. In CCS (2018).

OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S., AND
KEROMYTIS, A. D. The Spy in the Sandbox: Practical Cache
Attacks in JavaScript and their Implications. In CCS (2015).

OsVIK, D. A., SHAMIR, A., AND TROMER, E. Cache Attacks and
Countermeasures: the Case of AES. In CT-RSA (2006).

PAGE, D. Theoretical Use of Cache Memory as a Cryptanalytic
Side-Channel. Cryptology ePrint Archive, Report 2002/169 (2002).

PAK, B., WESIE, A., AHN, K. C., AND Fu, S. pwn.js v1.1.0: A
javascript library for browser exploitation, https://github.com/
theori-io/pwnjs 2019.

PERCIVAL, C. Cache Missing for Fun and Profit. In BSDCan (2005).

PESSL, P., GRUSS, D., MAURICE, C., SCHWARZ, M., AND MAN-
GARD, S. DRAMA: Exploiting DRAM Addressing for Cross-CPU
Attacks. In USENIX Security Symposium (2016).

Q1u, P.,, WANG, D., LYU, Y., AND QU, G. VoltJockey: Breaching
TrustZone by Software-Controlled Voltage Manipulation over Multi-
core Frequencies. In CCS (2019).

RAGAB, H., MILBURN, A., Razavl, K., Bos, H., AND GIUFFRIDA,
C. CROSSTALK: Speculative Data Leaks Across Cores Are Real. In
S&P (2021).

RAPID7. Metasploit Framework, https://github.com/rapid7/
metasploit-framework 2020.

RILEY, M. A Little Less Speculation, a Little More Action: A Deep
Dive into Fuchsia’s Mitigations for Specific CPU Side-Channel At-
tacks. In Black Hat Briefings (2020).

RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE, S.
Hey, You, Get Off of My Cloud: Exploring Information Leakage in
Third-Party Compute Clouds. In CCS (2009).

RYAN, K. Hardware-Backed Heist: Extracting ECDSA Keys from
Qualcomm’s TrustZone. In CCS (2019).

16

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

SCHWARZ, M., CANELLA, C., GINER, L., AND GRUSS, D. Store-
to-Leak Forwarding: Leaking Data on Meltdown-resistant CPUs.
arXiv:1905.05725 (2019).

SCHWARZ, M., AND GRUSS, D. How Trusted Execution Environ-
ments Fuel Research on Microarchitectural Attacks. IEEE Security &
Privacy (2020).

SCHWARZ, M., GRUSS, D., WEISER, S., MAURICE, C., AND MAN-
GARD, S. Malware Guard Extension: Using SGX to Conceal Cache
Attacks. In DIMVA (2017).

SCHWARZ, M., LiPP, M., AND CANELLA, C. miscO110/PTEditor: A
small library to modify all page-table levels of all processes from user
space for x86_64 and ARMVS, https://github.com/misc0110/
PTEditor 2018.

SCHWARZ, M., LIPP, M., AND GRUSS, D. JavaScript Zero: Real
JavaScript and Zero Side-Channel Attacks. In NDSS (2018).

SCHWARZ, M., L1pPP, M., MOGHIMI, D., VAN BULCK, J., STECK-
LINA, J., PRESCHER, T., AND GRUSS, D. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. In CCS (2019).

SCHWARZ, M., MAURICE, C., GRUSS, D., AND MANGARD, S. Fan-
tastic Timers and Where to Find Them: High-Resolution Microarchi-
tectural Attacks in JavaScript. In FC (2017).

SCHWARZ, M., SCHWARZL, M., LipP, M., MASTERS, J., AND
GRUSS, D. NetSpectre: Read Arbitrary Memory over Network. In
ESORICS (2019).

SEABORN, M., AND DULLIEN, T. Exploiting the DRAM rowhammer
bug to gain kernel privileges. In Black Hat Briefings (2015).

SHIN, Y., KiM, H. C., KWON, D., JEONG, J. H., AND HUR, J. Un-
veiling Hardware-based Data Prefetcher, a Hidden Source of Informa-
tion Leakage. In CCS (2018).

SONG, W., AND L1U, P. Dynamically Finding Minimal Eviction Sets
Can be Quicker Than You Think for Side-Channel Attacks Against
the LLC. In RAID (2019).

STECKLINA, J., AND PRESCHER, T. LazyFP: Leaking FPU Register
State using Microarchitectural Side-Channels. arXiv:1806.07480
(2018).

SULLIVAN, D., ARIAS, O., MEADE, T., AND JIN, Y. Microarchi-
tectural Minefields: 4K-aliasing Covert Channel and Multi-tenant
Detection in IaaS Clouds. In NDSS (2018).

SZEFER, J. Survey of microarchitectural side and covert channels,
attacks, and defenses. Journal of Hardware and Systems Security 3, 3
(2019), 219-234.

TANG, A., SETHUMADHAVAN, S., AND STOLFO, S. CLKSCREW:
Exposing the perils of security-oblivious energy management. In
USENIX Security Symposium (2017).

TATAR, A. Hammertime: a software suite for testing, profiling and
simulating the Rowhammer DRAM defect, https://github.com/
vusec/hammertime 2018.

TATAR, A., KRISHNAN, R., ATHANASOPOULOS, E., GIUFFRIDA,
C., Bos, H., AND RAazAvVI, K. Throwhammer: Rowhammer Attacks
over the Network and Defenses. In USENIX ATC (2018).

TENCENT-XUANWU-LAB. check.js - Spectre Check, https://xlab.
tencent.com/special/spectre/js/check. js 2018.

VAN BULCK, J. SGX-Step Foreshadow PoC, https://github.com/
jovanbulck/sgx-step/tree/master/app/foreshadow 2020.

VAN BULCK, J., MINKIN, M., WEISSE, O., GENKIN, D., KASIKCI,
B., PIESSENS, F., SILBERSTEIN, M., WENISCH, T. F., YAROM, Y.,
AND STRACKX, R. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution. In USENIX
Security Symposium (2018).

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_User_Guide
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_User_Guide
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/JSAPI_User_Guide
https://github.com/theori-io/pwnjs
https://github.com/theori-io/pwnjs
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
https://github.com/misc0110/PTEditor
https://github.com/misc0110/PTEditor
https://github.com/vusec/hammertime
https://github.com/vusec/hammertime
https://xlab.tencent.com/special/spectre/js/check.js
https://xlab.tencent.com/special/spectre/js/check.js
https://github.com/jovanbulck/sgx-step/tree/master/app/foreshadow
https://github.com/jovanbulck/sgx-step/tree/master/app/foreshadow

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

VAN BULCK, J., MOGHIMI, D., SCHWARZ, M., LIPP, M., MINKIN,
M., GENKIN, D., YUVAL, Y., SUNAR, B., GRUSS, D., AND
PIESSENS, F. LVI: Hijacking Transient Execution through Microar-
chitectural Load Value Injection. In S&P (2020).

VAN BULCK, J., OSWALD, D., MARIN, E., ALDOSERI, A., GAR-
CIA, F., AND PIESSENS, F. A Tale of Two Worlds: Assessing the
Vulnerability of Enclave Shielding Runtimes. In CCS (2019).

VAN BULCK, J., PIESSENS, F., AND STRACKX, R. SGX-Step: A
Practical Attack Framework for Precise Enclave Execution Control.
In Workshop on System Software for Trusted Execution (2017).

VAN BULCK, J., PIESSENS, F., AND STRACKX, R. Nemesis: Study-
ing Microarchitectural Timing Leaks in Rudimentary CPU Interrupt
Logic. In CCS (2018).

VAN BULCK, J., WEICHBRODT, N., KAPITZA, R., PIESSENS, F.,
AND STRACKX, R. Telling Your Secrets Without Page Faults: Stealthy
Page Table-Based Attacks on Enclaved Execution. In USENIX Secu-
rity Symposium (2017).

VAN DER VEEN, V., FRATANTONIO, Y., LINDORFER, M., GRUSS,
D., MAURICE, C., VIGNA, G., Bos, H., RAazAvl, K., AND GIUF-
FRIDA, C. Drammer: Deterministic Rowhammer Attacks on Mobile
Platforms. In CCS (2016).

VAN KESTEREN, A. Safely reviving shared memory,
https://hacks.mozilla.org/2020/07/safely-reviving-
shared-memory/ 2020.

VAN SCHAIK, S., GIUFFRIDA, C., Bos, H., AND RAazAvI, K. Mali-
cious Management Unit: Why Stopping Cache Attacks in Software is
Harder Than You Think. In USENIX Security Symposium (2018).

VAN SCHAIK, S., MILBURN, A., OSTERLUND, S., FRIGO, P.,
MAISURADZE, G., RAzAVI, K., Bos, H., AND GIUFFRIDA, C.
RIDL: Rogue In-flight Data Load. In S&P (2019).

VARADARAIJAN, V., KOOBURAT, T., FARLEY, B., RISTENPART, T.,
AND SWIFT, M. M. Resource-Freeing Attacks: Improve Your Cloud
Performance (at Your Neighbor’s Expense). In CCS (2012).

VILA, P., GANTY, P., GUARNIERI, M., AND KOPF, B. CacheQuery:
Learning Replacement Policies from Hardware Caches. In PLDI
(2020).

VILA, P., AND KOPF, B. Loophole: Timing Attacks on Shared Event
Loops in Chrome. In USENIX Security Symposium (2017).

VILA, P., KOPF, B., AND MORALES, J. Theory and Practice of
Finding Eviction Sets. In S&P (2019).

VOTIPKA, D., RABIN, S., MICINSKI, K., FOSTER, J. S., AND
MAZUREK, M. L. An Observational Investigation of Reverse Engi-
neers’ Processes. In USENIX Security Symposium (2020).

WANG, W., CHEN, G., PAN, X., ZHANG, Y., WANG, X., BIND-
SCHAEDLER, V., TANG, H., AND GUNTER, C. A. Leaky Cauldron
on the Dark Land: Understanding Memory Side-Channel Hazards in
SGX. In CCS (2017).

WEBER, D., IBRAHIM, A., NEMATI, H., SCHWARZ, M., AND
Rossow, C. Osiris: Automated Discovery Of Microarchitectural
Side Channels. In USENIX Security Symposium (2021).

WEISER, S., ZANKL, A., SPREITZER, R., MILLER, K., MANGARD,
S., AND SIGL, G. DATA - Differential Address Trace Analysis: Find-
ing Address-based Side-Channels in Binaries. In USENIX Security
Symposium (2018).

WICHELMANN, J., MOGHIMI, A., EISENBARTH, T., AND SUNAR,
B. MicroWalk: A Framework for Finding Side Channels in Binaries.
In ACSAC (2018).

WRAY, J. C. An Analysis of Covert Timing Channels. Journal of
Computer Security (1992).

XIAO0, Y., L1, M., CHEN, S., AND ZHANG, Y. Stacco: Differentially
Analyzing Side-channel Traces for Detecting SSL/TLS Vulnerabilities
in Secure Enclaves. In CCS (2017).

17

[135] X1A0, Y., ZHANG, Y., AND TEODORESCU, R. SPEECHMINER: A
Framework for Investigating and Measuring Speculative Execution
Vulnerabilities. In NDSS (2020).

XU, Y., Cul, W., AND PEINADO, M. Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems. In
S&P (2015).

YAROM, Y. Mastik: A Micro-Architectural Side-Channel Toolkit,
https://cs.adelaide.edu.au/~yval/Mastik/ 2016.

[136]

[137]

[138] YAROM, Y., AND FALKNER, K. Flush+Reload: a High Resolution,

Low Noise, L3 Cache Side-Channel Attack. In USENIX Security
Symposium (2014).

[139] YosIiFovicH, P., IONESCU, A., RUSSINOVICH, M. E., AND

SOLOMON, D. A. Windows Internals Part 1,7 ed. Microsoft Press,
2017.

libtea Feature List

¢ Common: make architectural and speculative memory
accesses; flush and prefetch cache lines; deploy high-
resolution timers; handle or suppress exceptions; pin to a
core and start victim threads; get physical addresses; read-
/write model-specific or system registers; disable hard-
ware prefetchers (Intel only).
¢ Cache: Flush+Reload, Prime+Probe, and Evict+Reload;
threshold calibration and eviction set generation; retrieve
cache set and slice information; encode/decode data in
the cache covert channel; print covert channel histograms.
e Paging: print PTEs in a human-readable format; read-
/write PTEs and physical pages; map physical address
ranges; invalidate TLB entries; read/write memory types
(PATs/MAIRs) e.g., to make a region uncacheable; force
memory deduplication (Windows only).
Interrupts: print GDT/IDT entries, call gate descriptors,
and segment descriptors; establish user-space mappings
for GDT/IDT; install a custom call gate; install user mode
and kernel mode interrupt handlers; run arbitrary C func-
tions in kernel mode; configure the local APIC timer (for
precise execution control).
Enclave (Intel SGX only): register a custom Asyn-
chronous Exit Pointer (AEP) trampoline; get addresses
of the enclave base and register state (GPRSGX) region;
print/retrieve enclave information and GPRSGX state;
read/write enclave addresses (debug enclaves only); fetch
the stored instruction pointer (ERIP) from an interrupted
enclave.

https://hacks.mozilla.org/2020/07/safely-reviving-shared-memory/
https://hacks.mozilla.org/2020/07/safely-reviving-shared-memory/
https://cs.adelaide.edu.au/~yval/Mastik/

	Introduction
	Background
	CPU Microarchitecture
	Microarchitectural Side-Channel Attacks
	Rapid Prototyping

	The Microarchitectural Attack Development Process
	Motivation
	Methodology
	RQ1: Attack Building Blocks
	RQ2: Microarchitectural Control
	RQ3: Languages and Tooling
	RQ4: Development Process and the Role of Prototyping
	Summary

	Frameworks
	libtea
	SCFirefox
	Rapid Prototyping with the Frameworks

	Evaluation
	API Usability
	Cross-Platform Support
	Rapid Prototyping with SCFirefox

	Discussion
	Conclusion
	libtea Feature List

